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Continuing with this annual series of comprehensive combinatorial chemical research (Figures5). Figure 1A
surveys of combinatorial librariésthe present review  graphically illustrates the number of libraries published
captures small molecule libraries for pharmaceutical applica- during the years 19921999 as divided into two broad
tions reported in the literature during the year 1999. The total classifications: (1) chemical libraries for which their syn-
number of libraries published in 1999 was 292. There were thesis and biological assay data is reported (disclosed
85 citations for libraries describing biologically active agents biological activity), and (2) chemical libraries for which only
and 207 citations for library constructs without disclosed their synthesis was reported and no disclosure of biological
biological activity?#>? Overall, these numbers are quite activity (undisclosed biological activity). The number of
similar to those reported in last year's reviéiLast year,  reports of biologically active libraries grew at a fairly steady
the first example of an efficacious and orally active pace. The largest single jump (10-fold) occurred in 1995,
compound obtained directly from an optimization library was ith a steep rise occurring in 1994.999. The 1998 library
reportect>® In addition to new examples of orally bioavail-  nymber of 74 is nearly equivalent to the combined total of
able agents coming from chemical librarfés?2°>1°this year the preceding 6 years. The number of biologically active
marks another milestone: a 500-member optimization library |ipraries for 1992 through 1999 was 240. In contrast, the
played a defining role in the identification of a clinical yumber of reports of library synthesis without disclosed

candidaté>!*3 The effort was reported by Agouron Phar-  pigiagical activity rose at a much more dramatic pace as the
maceuticals in their structure-based rhinoviral 3C-protease pascent field began to take root. In 1990994, only 15

inhibitor program. Achievements such as these are worth iy aries of this type in total had been reported, comparable

”O“”bg as !alrgﬁ cqpltlall |rr1]ves|tm%r;ts Qave besn ma}dle "Min number to the 12 biologically active libraries reported for
combinatorial chemical technologieS.T oday combinatoria he same period. Library citations (without biological data)

s_ythesis pervades many aspects of _drl_Jg d_iscovery from _leaofncreased by a factor ofx3in 1995 to 43 libraries. In 1996
finding and target validation, lead optimization, to enhancing library publications of this genre more than doubled (2,5

corporat_e compo_und _coIIectlon_s. . held steady for 1997, and then doubled again in 1998 to 247
Including the libraries compiled herein, a total of 975 . . . ; : . . . S
libraries. Libraries with undisclosed biological activity fell

gttarruacr;(jfe Sh ?r:/?hizesgmatrtg:r?;ie\?e ?é?/?ngl'g;i gge;;n?r?nerlc back slightly to 207 libraries in 1999. The total number of
P 9 9 libraries in this classification is 735, some 70% more than

In 1992 when the first publications of libraries began to reports of biologically active libraries. This gap is not too

appear in the literature. An analysis of the data collected in rorising since r rchers are anxi t0 demonstrate new
the reviews reveals some interesting statistics and trends i PrISING SINCE Tesearchers are anxious to demonstrate ne
chemical methodologies, while safeguarding the structures

* E-mail: roland@pharmacop.com. of active library members. Figure 1B shows the cumulative

10.1021/cc000055x CCC: $19.00 © 2000 American Chemical Society
Published on Web 09/12/2000
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total of both library classifications, which on balance has 10 T T -
increased approximately 1x5each year. 199297 1998 1999

The early appeal of combinatorial chemistry was creating vear
large discovery-type libraries through synthesis on solid Figure 5. Discovery, targeted, and optimization libraries (biologi-

" . : : cally active libraries only).

support. In addition to its perceived synthetic advantages,
solid-phase synthesis was the overwhelming choice for the total reports in 1996. This was led by advances in the
library construction in 19921995 (Figure 2). Some 80% development of new solid-phase reagents, scavenger resins,
of the libraries produced in this time period were generated novel fluorous-based separations, and automated hquid
on solid support. Solution-phase synthesis surged to 50% ofliquid extractions. Publications of solution-phase library
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Figure 6. Libraries from polyhalogenated heteroaromatic scaffolds.

synthesis remained steady at ca. 33% in 1997 and 1998, butategories: scaffold derivatizations (27%), acyclic synthesis
receded to its 19921995 levels (20%) this immediate past (19%), monocyclic synthesis (28%), bicyclic and spirocyclic
year. The data suggest that solid-phase synthesis continuesynthesis (22%), and polycyclic and macrocyclic synthesis
to hold a dominant position in combinatorial synthesis as (4%). A widely used scaffold or template for derivatization
more and more chemistries are redeveloped on this mediumis the polyhalogenated heterocycles, e.g., cyanuric chloride
Figure 3 indicates the origin of library contributions over and trichoropyrimidine (Figure 6)°27® Substituted fluo-
the last 8 years, i.e., from the laboratories of academia orronitroaromatics have been especially versatile reagents for
industry. In the combined years 1992997, two-thirds of ~ the construction of mono-, bi-, and macrocycles (Figure
the contributions were from industrial laboratories, with this 7).255-25° Many of the classical routes to heterocycles have
number remaining relatively constant in 1998. This past year been reported on solid pha%g.
library affiliations moved to an industry:academia ratio of ~ Focusing on the 240 biologically active libraries published
1:1. Overall, pharmaceutical and biotechnology industries in 1992-1999, one can readily distinguish between discov-
appear to be the prevailing players in the game of small ery, targeted, and optimization libraries (Figure 5). For the
molecule combinatorics, motivated by the goal of increasing purpose of this discussion, discovery libraries are defined
drug discovery speed and reducing costs. The majority of as typically large in size X5000 members) having no
academic publications showcased new synthetic methodolo-preconceived notions about which molecular target(s) it may
gies. be active against. Targeted libraries are biased in their design,
Figure 4 reveals the breakdown of libraries by subclass. defined as those libraries which contain a pharmacophore
Biologically active libraries are designated into one of five known to interact with a specific (or family of) molecular
subclasses. These include proteolytic enzymes (27%), non+target. Optimization libraries are defined as those libraries
proteolytic enzymes (22%), GPCRs (20%), non-GPCRs in which a lead exists and an attempt is being made to
(17%), and cytotoxic and antiinfective agents (14%). Within improve its potency, selectivity, pharmacokinetic profile, etc.
the proteolytic enzyme subclass, serine proteases, namelyAccordingly, each of the 240 libraries have been examined
the trypsin superfamily, were the most screened molecularand binned into one of these three categories. Between the
targets. For GPCRs, opioid receptors appear to be theearly years 19921997, discovery libraries garnered the
perennial favorite, not so much as a serious molecular target,highest percentage of citations at 57%. This was twice the
but a convenient demonstration of library utility. Libraries percentage of targeted libraries and 4 times the reported
without reported screening data also fall into one of five number of optimization libraries. The number of discovery
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Current libraries: Previous libraries:
? 0 0
Ac-Aa1-HN AagNHy _screening  Ac-Asp-HN._.P Ala-NH,
OH S OH HS NH screenmg 5~ NH
(o]
P 2-N 1 N
Library 1.164 1: ACE inhibitor R R “CH,-(3-Pyr)
(400 members) N-domain: K;= 12 nM; lo)
C-domain: K;= 25000 nM
7283 8: Collagenase inhibitor
Cl Ph (684 members) Kj= 2000 nM
R'HN \)\H/Aalz-NH2 _sereening )
OH Q O
P. Trp-NH
230 ﬂ B 6H : HS N/\ R? screenlng N (4 QOMe)-Ph
Library 1.2 o J o
Ph HN\n/‘\Fv HN CHo-CeH
2: Stromelysin inhibitor Chada ]
Ki=0.9 nM (0]
(low selectivity versus other MMPs) 283 10: Collagenase inhibitor: K; = 30 nM
9 2.5x selective versus gelatinase-B;
Previous libraries: (684 members) 100x selective versus stromelysin

ZHN \)\”/Aa -AayOH  Soreening
OH

32823

)
HN 'FI"\)\WArg-Phe-OH
TR

5: Thimet oligopeptidase inhibitor

spawned libraries 1.3 and 1.4
in search of selective collagenase inhibitors

Optimization libraries:

{800 members) Kj=0.16 nM
0 (o}
o]
; i SR? /\)LN/\ 4-OMe)-Ph
HvAa1j/ g;/\“/ Aa,-OH  screening  H. Pro\:/ z » Pro-OH HS NT R cening HS o ( )
Ph ° o o “Nj(ka‘ ' CHy(4-NO,)-Ph
4% 6: Neurolysin inhibitor (o] o
(800 members) Ki=4.0nM Library 1.32" 11: Collagenase inhibitor: K; = 47 nM

Figure 8. Dive’s libraries of phosphinic acids.

libraries has fallen rather significantly in the past two years
from its 57% high to now the lowest in the group at 21%.

In the same 2 year period, targeted libraries now top the

>25x selective versus gelatinase-B

(1225 members) and stromelysin

OMe

charts, rising from 30%— 45% — 54%. Optimization 0 j‘\z 0

libraries rose from 7% (19921997) to ca. 20% (1999), equal HS N~ ~CONHR? Hs/\)‘\N CONH¢-Bu

to the number of discove_ry library disclosur_es_. It is tempting HN R screaning HN CHy-(4-NOg)-Ph
to speculate whether this representsue shift in the way o)

the combinatorial chemistry is being valued and applied in Library 1.422" 12: Collagenase inhibitor: K; = 21 nM

drug discovery, or an artifact of industrial research released
for external consumptiohAnecdotal evidence from discus-
sions at recent conferences and literature commentaries

(ca.700 members) 60x selective versus gelatinase-B

Figure 9. Affymax’s thiomethyldiketopiperazine libraries.

suggest targeted library collections biased toward a specific QMe
class or family of molecular targets and “lead explosion”

libraries may be preferred over large discovery-type librar- oH R cl

ies254.279.280Certainly large Iibra_ries offer L_m_ique advantages _, R \.)\/'{"R? sereening L OH N
over smaller focused collections providing they can be 8, o N\:)\/N
designed with drug-like properties and screened efficiently Library 1.7% O XN, O

and the actives can be readily identifi&d.

One of the criticisms leveled against combinatorial chem-
istry and which may still slow the acceptance of the
technology is that the chemistries generally yield structures
that are too peptide-like and contain multiple amide bonds.
This is a valid concern due to the known pharmacokinetic

(ca.170 members)

13: Plasmepsin |l inhibitor: K;= 2 nM
5x selective versus cathepsin D

Cl

1
liabilities, poor drug-like characteristics, and difficulty in aln\jij\ , _eening }p
optimizing these types of compounds. Data derived from the R H R
biologically active libraries show that, of the libraries 114234

reported during 19921997, ca. 50% were in fact peptide-
based (more than three contiguous amino acid residues).
Approximately 70% of the libraries incorporated one or more

{ca. 200 members)

OPh

15: Cathepsin D inhibitor: K= 0.7 nM

a-amino acids, and ca. 85% of the libraries contained one Figure 10. Hydroxyethylamine libraries for cathepsin D and
or more amide bonds (data not shown). In the combined yearsP@smepsin Il inhibition.

1998-1999, the number of reported peptide libraries fell by acids in library construction remains high at ca. 50%, as these
more than half to ca. 20%, most likely reflecting a bona fide synthons represent an excellent source of chiral, low mo-
loss in interest in these types of libraries. The use-aimino lecular weight diversity elements.
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(Chemistry carried out in IRORI
MicroKans: 84 compounds
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Figure 11. Mechanism-based libraries targeted for (chymo)trypsin serine proteases.

1992-1997 1998 1999 five subclasses: proteolytic enzymes (Table 1), nonpro-

peptide-based libraries 50% 20% 21% teolytic enzymes (Table 2), GPCRs (Table 3), non-GPCRs
libraries using>1 amino acid 70% 55% 53%  (Table 4), and cytotoxic and antiinfective agents (Table 5).
libraries containing=1 amide bond 85% 65% 75%  The name of each library is given, along with its size and

Finally, the notion that combinatorial synthesis acting affiliation (company name for libraries produced from
alonewill accelerate drug discovery research has not been industry, senior author for libraries reported from academia),
borne out by experience over this first decade. Ideology of @s Well as the structure of the most active compound from
a single universal library as a source of leads against athe library. Each library listed in Tables—b is given a
plethora of molecular targets, purported by some, is not library number, e.g., library 2.10 refers to library entry 10
credible. What is evident is that combinatorial synthesis is in Table 2. Libraries without accompanying biological data
an important technology among a suite of technologies thatare also segregated into five subclasses. Here each entry is

can be brought to bear on So|ving drug discovery prob|ems_ further subdivided as per the mode of Synthesis, solid- versus
solution-phase synthesis: scaffold derivatization (Table 6a,b),

Library Descriptions acyclic synthesis (Table 7a,b), monocyclic synthesis (Table

Consistent with the format of previous annual reviéws, 8a,b), bicyclic and spirocyclic synthesis (Table 9a,b), and
the abstracted 1999 libraries are sorted into two major polycyclic and macrocyclic synthesis (Table 10a,b). The
categories, libraries with and without associated biological affiliation of each library is provided, along with the number

activity. Biologically active libraries are further sorted into  of synthetic examples, range of reported reaction yields, and
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a brief description of its synthesis. As indicated previoddly, iy 1.19 synthesis:

the size of the reported library does not necessarily reflect o AsOMe R' 2‘:;2‘:::3 R1
confirmed library size. Single synthetic transformations, @ inker-cro NaBH(OAc); @/\NJ\COZME THF @/\N couH
phage display, polysaccharide, and polynucleotide libraries, 2 H n20c
and libraries for applications in material science or other
nonpharmaceutical research areas, are not included in theﬁNJ»aN R' | MeQ ome A" MeO oMe
tables. M(ez?a)we @/\N)\n/ \)Q/Na thrl:lclf‘EA W\NJ\WH\_)Q/NHQ
Libraries Yielding Proteolytic Enzyme Inhibitors RéoC a0 RGO s
Each of the four broad classes of protease®tallo- — R >
(libraries 1.1-1.5), aspartyl- (libraries 1:61.8), serine- EDC e H\)k/en < oo
(libraries 1.9-1.18), and cysteine proteases (libraries 19 %2 O I —_

1.20)y—were targeted for library synthesis (Table 1). As in

previous years, mechanism-based design strategies were
generally employed to create protease inhibitor libraries. This )L )ﬁr 7)\/
approach relies on selecting a functional group or pharma—

cophore known to engage an enzyme’s active site residues Library 1.19
T . H (18 members: chemistry
and building a library around the scaffold in an effort to carried out in TRORT MicroKans)

obtain potent and selective inhibitors.

In a continuation of their research on the preparation of
libraries containing the phosphinic acids, a transition-state ; ; ; ; s
isostere for metallo-proteinas&g, Dive and co-workers 1 Ot ~ NS T\@
described the preparation of two new peptide phosphinic acid T QCFa \GEOMe \Q(Nj m
libraries, 1.1 and 1.2 (Figure 8). Library 1.1 yielded a gz_.cucrme, -GH,Ph, -CHMe,
selective N-domain inhibitol of angiotensin | converting
enzyme (ACEf* A selective inhibitor2 of stromelysin
(matrix metallo-proteinase-9) was obtained from library
1.22%0 The structurally related tripeptide phosphinic acid o) M N
libraries 3 and 4 were first described by Dive in the ;S])Lt N NW/UVNY\O)Q

o] (o]

identification of potent and selective inhibitosand 6 of

Basis set for library 1.19:

Library active:

the metallo-proteases thimet oligopeptidase and neurolysin 33: Cathepsin K inhibitor

282 . o . P Ki,apps = 1.3 nM
_1. _ _The ACE |nh|b|tpr 1_ is struc'Fura_IIy _(_1|st|n<?t from_ (70-old seleanye versus cathepsin L
inhibitors 5 and 6, and its discovery is significant in that it 1000-fold selective versus cathepsin B)

is the first agent to discriminate between the catalytic N- Figure 12. 1,3-Bis(acylamino)-2-butanones library as cysteine
and C-domains in this enzyme. The C-domain of ACE protease inhibitord3

catalyzes the hydrolysis of angiotensin | and angiotensin |l
regulating blood pressure, while the N-domain of ACE is tease$? A series of optimization libraries (library 1.7, Table
thought to be responsible for the specific hydrolysis of other 1) were systematically prepared, ulitmately furnishing potent
physiologically important substrates, e.g., Ac-Ser-Asp-Lys- inhibitors of plasmepsin, e.dl3, although in general, these
Pro, a negative regulator of hematopoietic stem cell dif- agents demonstrated weak selectivity against cathepsin D
ferentiation and proliferation. Currently, marketed ACE (Figure 10). Throughout the work, particular attention was
inhibitors do not discriminate between the enzyme’s two paid to the physicochemical properties of the libraries and
catalytic domains, and thus the selective N-domain inhibitor resynthesized compounds as measured against the Lipinski
1 may prove to be a useful pharmacological tool in parameters. Earlier work with libraries of this class furnished
understanding the role of the N-domain in vivo. potent cathepsin D inhibitord 4 — 15).28

Affymax reported the synthesis of two thiol-containing Libraries possessing inhibitors of trypsin-like enzymes
diketopiperazine libraries (libraries 1.3 and 1.4; Figuré?®).  were reported from several groups. These includdce-
The research group previously disclosed these thiol-contain-tothiazoles (library 1.103,arylamidines (libraries 1.11 and
ing heterocycles as possessing inhibitory action against thel.12)?218benzothiophenes (library 1.18Y,and aminocy-
matrix metalloproteinases (MMP%® In the earlier work, clohexanones (library 1.14)A novel series of amino acid
potent collagenase inhibitors were discovered, but thesesulfonamides were optimized to yield an orally bioavailable
lacked selectivity T — 8; 9 — 10). It was the goal of the  thrombin inhibitor (library 1.18¥2 Two examples of mech-
new libraries to enhance this aspect of the series. Selectivityanism-based inhibitor libraries of serine proteases leading
was imparted to the class by incorporating nitrophenylalanine to covalent adduct formation were reported. These include
as one of the amino acid monomers, furnishing inhibitors the benzisothiazolones (library 13§yielding inhibitors of
11, K; = 47 nM (> 25-fold versus gelatinase B and strome- tryptase, and thiadiazolidin-3-ones (library 1.1%)showing
lysin), and12, K; = 21 nM (ca. 60-fold selective versus a broad spectrum of affinity for serine proteases with a
gelatinase-B). (chymo)trypsin-like fold (Figure 11).

In a full paper, Ellman described further utility of SmithKline Beecham published on the design and enzy-
hydroxyethylamine libraries as inhibitors of aspartyl pro- mology of a novel class of 1,3-bis(acylamino)-2-butanones
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Lead deve/opmenr Library 1.20 synthesis:
NHAc
\)J\ O OH @

(o) NH
DIEA, HOBT,
PYBOP, DMF
34: K;=6nM
FmocHN COzEt FmocHN CO,Et
39

CONH2 ' ,
ge
\)J\ CO,Et 1.2% DBU, CHxCly
2. Fmoc-Phe-OH, then (1)
3. Fmoc-Leu-OH, then (1)
. =
35: Kops/l= 25,000 M ‘s‘ \/U\ CO,Et

Ph 41
CONHZ
RCOCI, coflidine, CHClg
o
JJ\ RCO,H, DIEA, HATU, DMF;
CO,Et then resin cleavage

36 Kopg/l= 280,000 M° 1s ‘ Oy NH;,

o e ‘
R)LN N\)I\N 0o,k
CONH2 AL : W 2
Ph

\)l\ Library 1.20
CO,Et ~ 500 member optimization library to

discover a replacement for the metabolically
labile thiocarbamate in lead 36

37: kope/l= 260,000 M"s"

l ON—NH
o] o)
7 N " "N Z CO,Et
| H o H

o-N
The N-terminal
F 5-methylisoxazole-3-caboxamide
38: Kope/l= 1,470,000 M's™ identified in library 1.20
AG7088: clinical candidate was retained in the clinical
candidate.

Figure 13. Optimization library 1.20 and the identification of a clinical candidate for human rhinovirus 3C prétéase.

as cysteine protease inhibitd®.Their interest in this area  synthons were used in the library construction, inspection
is a result of a discovery program aimed at identifying of the final products showed that epimerization had occurred
inhibitors of cathepsin K& Cathepsin K is a cysteine to some extent. This was thought to take place during the
protease that degrades collagen at sites of bone remodelinggoupling of azide29 with resin-bound acid and upon the
and inhibitors thereof may represent potential antiosteoporetichydrolysis of the dimethyl ketal protecting group. Library
agents. In an effort to facilitate the rapid optimization of the synthesis was carried out using the IRG®Rtags. Evaluation
1,3-bis(acylamino)-2-butanone inhibitors, a solid-phase syn- of the library against cathepsins K, L, and B revealed
thesis for this class of compounds was developed (Figureinteresting SAR. The library was essentially devoid of
12). Using the acid labile BAL aldehyde linker on polysty- cathepsin B activity. This was believed to be due to an
rene resin, the synthesis was initiated via the reductive unfavorable interaction of the heterobiaryl with an insertion
amidation of amino acid esters onto link&s. Acylation of loop present on the' Side of the enzyme. Cathepsin K had
the resulting secondary amine and hydrolysis furnished acida strong preference for leucine versus phenylalanine at the
28. Coupling28to the orthogonal protected azide amiz&e P, position, while cathepsin L showed a slight preference
gave resin-bound intermediaB®. Azide 29 was prepared  for phenylalanine. The most potent cathepsin K inhibitor was
in solution via a four-step sequence from Boc-alanine methyl compound33: K; = 1.3 nM, ca. 70-fold selective versus
ester. Reduction of the azido group3@, then acylation with cathepsin L.

3-(2-pyridinyl)phenylacetic acid, and acid-mediated cleavage A beautiful example of the application of solid-phase
furnished the library compounds. Although optically active chemistry in drug discovery is found in the optimization of
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Figure 14. 1,4-Benzodiazepines as inhibitors of Src protein tyrosine kitése.
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{P mimic] = phosphate mimic

Phosphate mimic basis set:

P(O)(OtBu), _ P(O)(OtBu),

PO)OBY),  CBu
POIOBW: ™ po)0Bu), /E O)\COZtBu
X X X X X X

X = CHO, COH

4

Cdc25 phosphatase inhibitors:
" P(O)(OH),

SN
07 P(0)(OH)
N FmocHN 0 I O
|
=
o) o) .
N HOLC N
(HO)(O)P o] 45: ICgo = 8.0 uM /L o
Z
HN o

O

46: IC55= 0.7 uM
44: 1C55= 16 UM 50 38

Figure 15. Ugi libraries of Cdc25 phosphatase inhibitéts.

irreversible human rhinovirus 3C protease inhibitors leading preferences, possessed a second-order rate CoRgtANt

to a clinical candidaté®!5® Researchers at Agouron Phar- 25000 M! s . Exchange of the N-terminal benzyloxycar-
maceuticals had shown that substrate-based peptide aldebamoyl group in35 for the benzylthiocarbamoy! group led
hydes, represented 34, were potent, reversible inhibitors to a10-fold increasan the second-order rate constaB6;(

of 3C protease. Due to the well-known pharmacological k.ndl = 280 000 M s™1). The rationale for the boost in
limitations of peptide aldehydes as viable drug candidates, affinity was provided through analysis of the X-ray crystal
the group turned to peptide Michael acceptors as covalent,structure of inhibitor36 bound to serotype-2 3C protease.
irreversible inhibitors of the cysteine protease with the belief The crystal structure revealed that the thiocarbamate sulfur
that the electrophilicity of these agents could be sufficiently atom lies deep in the enzyme’s focket and is in van der
modulated through high enzyme specificity. The lead com- Waals contact with the SSubsite’s Phe residue. This is in
pound 35, based on the enzyme’s; Rnd B specificity contrast to the oxygen analogd®. However, there was
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maintaining bioavailability

Library 2.7
designed to explore SAR of a series
of benzyl amines in search of potent,
bioavailable inhibitor
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Figure 16. Abbott's FTase librarie&10t
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54: leo =0.2nM
cellular activity: EC5q = 4.4 nM
oral dosing nude mice at 100 mpk, qd effected
54% reduction in tumor size relative to controls
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Initial lead 55 identified by NMR

examining changes in amide NH
chemical shifts of Erm protein-bound By 2
S-adenosyl-L-homocysteine (SAH) NN
LA
/=N )\ =
N }\/e_NHZ HoN™ 'N™ "SMe
HOZCJ\/\ /\Q‘N\?N 55: Kp=1.0 mM
HO ©OH ‘ Testing of in-house analogs
63: SAH - a naturally occurring inhibitor
b x e
D 3
- - s
H N/l\©\ HzN/kN/k©\ )\ /)\ O
OH OH
56: Kp = 0.3t mM 57: Kp=12mM 58: Kp = 5.0 mM

‘ synthesis of new analog
QLI
NN r\O
H

59

library generation Kp = <0.1 mM; Ki=75uM

NH; NH, NH,
screemng % )§N %;}j\ N&N
/k )\ )\ /)\ A

Library 2.8a 60: K;j=8 uM 61: Ki=3uM
(232 members)

library generation
NH, NH,
J{\/QJN\ screening < Ei /]NI\*N
~
N ONTR N NJ\©/NH2
H H
Library 2.8b 62: K = 4 uM
1K=

(411 members)
Figure 17. Inhibitors of Erm methyltransferase by NMR and parallel synth¥sis.

concern that the thiocarbamate moiety would prove to be aeffort represents a prime example of the value of combina-
metabolic and/or toxicologic liability, and thus an N-terminal torial chemistry (solid-phase synthesis) in lead optimization.
surrogate was sought. This was carried out through solid- In this instance, the N-terminal capping element 5-methyl-
phase chemical optimization. Library 1.20 was created by isoxazole-3-carboxamide identified in library 1.20 was
attaching glutamic acid analogi® to Rink resin (Figure retained in the clinical candidate.

13). Amide 40 so obtained was deprotected and subjected
to amino acid couplings to furnishl after Fmoc-deprotec-
tion. Amine41was a key intermediate derivatized with some  Table 2 lists 19 libraries displaying activity against
500 acylating reagents to generate the optimization library. nonproteolytic-type enzymes. The table is subdivided into
Evaluation of library 1.20 using a high throughput assay kinases and phosphatases (entries—2.4), transferases
identified the 5-methylisoxzole-3-carboxyl group as the (entries 2.5-2.8), reductases and dehydratases (entries 2.9
preferred N-terminal surrogate. This heterocycle was incor- 2.12), and miscellaneous mammalian and nonmammalian
porated into the main serieSq — 37). Compound37 enzymes (entries 2.13.19).

(kond! = 260 000 M* s71) was essentially equipotent with Benzodiazepine library 2.1, composed of 1640 members
thiocarbamate36 (kondl = 280000 M s™b). Further and prepared in the Ellman group, was screened against a
analogues produced inhibitdB (AG7088;ko.ndl = 1 470 000 wide variety of protein tyrosine kinases including Src, Yes,
M~ s 1) with reduced peptide character. AG7088 is currently Abl, Lck, Csk, and fibroblast growth factor receptor (Figure
undergoing clinical evaluation for the treatment of rhinoviral- 14)187 Binding was observed only against the Src family
mediated infections, e.g., the common cold. This research(mixed against the peptidic substraie= 35uM; noncom-

Libraries Yielding Nonproteolytic Enzyme Inhibitors
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Figure 18. Merck’'s PDE-4 optimization library 2.1%.
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CF3C0O,CgF5
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HoN

1.

I
T™MOF | (89)
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2. 3% TFA, CHyCly

HN_
H,N N
COCH,NH,

87 ICsp DNA gyrase = 10 uM

R1

(48 members)

Figure 19. Tetrahydrog-carboline library yielding DNA gyrase inhibitof8°

petitive against ATP-MgK; = 17 uM). Preferred ring
substituents include thp-hydroxyphenyl andp-hydroxy-

subjected to reductive amination with a host of amines.
Inhibitor 52, derived from cyclohexylalaninol, demonstrated

benzyl groups. The small nonpeptide, nonnucleotide classnanomolar activity (IGo = 8 nM). Modification of the biaryl
of compounds is structurally unique among known kinase to append aw-methyl substituent and replacing the hydroxyl

inhibitors. Lead42 is an inhibitor of colony formation of

with a thioethyl group furnished inhibitd@4 having high in

HT-29 colon adenocarcinoma cells that are dependent onvitro (ICso = 0.2 nM) and cellular activity (E€ = 4.4 nM).

Src activity.

A four-component Ugi condensation was used to create

Compound54 was also active in vivo.
Erm (erythromycin-resistance) family of methyltrans-

three libraries (2.4ac) containing potential phosphatase ferases catalyzes the mono- and dimethylation of the N6-
inhibitors (Figure 15}* These libraries incorporated a amino group in adenine using S-adenosylmethionine (Ado-
selection of known phosphate mimics as either the aldehydeMet) as a methyl source. This action results in base-specific
or acid Ugi reaction partners. Libraries were screened agains23s ribosomal RNA methylation, preventing the binding of
cell cycle phosphatase Cdc25, an oncology target. A numbercertain macrolide antibiotics, and is the mechanism by which
of structures (e.g44—46) were found to be active. Potencies pathogenic bacteria may become resistant to these antibiotics.
of resynthesized compounds ranged from 0.7 tq:86 Studies have shown that inhibitors of Erm methyltransferase
Protein farnesyltransferase (FTase) is responsible for thein combination with a broad-spectrum macrolide antibiotic
farnesylation of oncogenic Ras proteins, a posttranslationalmay be useful in treating resistant bacteria. Using SAR by
modification required for membrane association and signal NMR, triazine 55 (and several other classes of small
transduction. Inhibitors of FTase block mitogenic signaling molecules) was identified as a weak inhibitor of ErmAM
pathway leading to uncontrolled cell division; hence, the methyltransferase (Figure 1%).The compound caused

enzyme is an attractive target for cancer chemotherapy.chemical shift changes in Erm protein-bougddenosyl-

Abbott produced two optimization libraries 2.6nd 2.7

homocysteine§3; SAH), and its binding was competitive

in an effort to enhance the pharmacokinetic properties of with this naturally occurring Erm inhibitor. In-house ana-

their lead47 (Figure 16). Biaryl7 is a potent, non-cysteine,
inhibitor of FTase (IG = 0.4 nM) and active in whole cells.
In-house studies suggested the pyridinyl ethedis a

logues of55 showed that the activity of this class could be
modulated by varying ring substituents (e56,-58), leading
to the synthesis of the piperidinylaminotriazia® (K; = 75

metabolic liability, presumably through unwanted formation xM). Keeping the amino and piperidinyl substituentss

of the pyridineN-oxide. Evidence for this was obtained upon
replacement of the pyridinyl ring with a furfuryl moiety,
which afforded ethed8 having 30% oral bioavailability in
the rat, albeit reduction in enzyme affinity. Bromid@ was

constant, library 2.8a of 232 members was created. Evalu-
ation of the library revealed the 2-aminoindanyl as a par-
ticularly effective synthon, yielding an ErmAM inhibitor
60: Ki = 8uM. The corresponding 1-aminoindanyl congener

an advanced intermediate used for the generation of a librarywas 10-fold less active. Library 2.8b further explored the

of furanylbiaryls (library 2.6) via solution-phase Suzuki

SAR of the class wherein the amino and indanyl substituents

coupling. A number of potent FTase inhibitors were found were held constant while varying the piperidinyl group.

in the library. In particular, the 5-(4-chlorophenyl)furfuryl

Thislibrary led to a further 2-fold increase in potency; the

ether50restored enzyme and cellular potency and was found anilino group was preferred over piperidin60(— 62).

to have reasonable pharmacokinetic properties.

Further NMR and X-ray crystallographic studies indicated

In library 2.7, benzylamines were explored as replacementsthat the anilino group 62 partially fills the space occupied

of the pyridinyl ether i47.2°* Resin-bound aldehydgl was

by the ribose ring of SAH&3), while the amino acid portion
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Lead structures:
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Figure 20. Delta opioid ligands from Organon’s libraries 3.1ah31155
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Lead structure: Library actives
O N~ R
/\.;\ I @
7 0/\5/\N
N OH OH
102: Pindolol
partial 5-HT4 5 agonist
107: R=H 109
Library synthesis: K 5-HT44=1.1 nM K; 5-HT14o=6.0nM
K.CO K; 5-HT re-uptake = 50 nM K; 5-HT re-uptake = 120 nM
2 3
AOH + o ] %% 108:R=F
103 104 © K; 5-HT14=1.0nM

K; 5-HT re-uptake = 52 nM

ArO/\<(\) + A0

105 106 %"
O/Y\N
RyNH (0.8 OH
equiv)
_Hon A0 NR,
50°C OH
Library 3.6 110
Purified (Amberlyst ion exchange K; 5-HT14=8.3nM
resin) and tested up to 100 mixtures K; 5-HT re-uptake = 10 nM
in 100 wells; deconvoluted to 65% orally bioavailable, rat

mixtures of 10, then single
compound synthesis.

Figure 21. Merck's library of 3-aryloxy-2-propanolaminé%’

of SAH is completely unoccupied. This suggests that group to the corresponding bromide was accomplished using
additional gains in potency may be achieved by further bromotriphenylphosphine bromide in methylene chloride
structural modifications 062, engaging unoccupied binding (75— 76). Bromomethyl intermediat&6 was treated with
sites in ErmAM. a range of nitrogen and sulfur nucleophiles, affording library
The solid-phase synthesis of highly substituted thiophene 2.15. Alternatively, carboncarbon bond formation via Pd-
derivatives and their activity against the cyclic nucleotide catalyzed coupling of 6 with lithoaryltriisopropylboronates
phosphodiesterase-4 (PDE-4) enzyme were described byled to the direct exchange of the bromine atom for an aryl
researchers at Merck Frosst (Figure ¥8DE-4 is a member  ring. One of the more potent PDE-4 inhibitors identified from
of a broad class of hydrolases and is primarily responsible the library was77, ICso = 8.0 nM. This inhibitor contained
for the hydrolysis of cAMP in inflammatory and immune the 3-cyclopentyloxy-4-methoxyphenyl ring at C(5), a sub-
cells. Roliprant4, piclamilast65, and ariflo66 are examples  stituent shared by known PDE-4 inhibito84-66
of PDE-4 inhibitors currently in development for the treat- DNA gyrase inhibitors were identified from a library of
ment of depression, rheumatoid arthritis, and asthma, re-tetrahydrog-carbolines (library 2.19, Figure 19 The key
spectively. Library 2.15 was based on the lead struddidre  intermediate for the library was the resin-bound amino acid
a trisubstituted furan, presumably identified through screen- aldehyde85 prepared by sequentially attaching amino acid
ing an internal compound collection, possessing af € fluorenylmethyl esters to chlorocarbonate resin, followed by
2.5uM against PDE-4. Initial SAR revealed that furan and deprotection, reduction of the corresponding activated pen-
thiophene cores were interchangeable providing that the 2-tafluorophenyl esters with tetrabutylammonium borohydride,
and 5-aryl rings remained intact. In contemplating a library and oxidation with sulfur trioxide-pyridine comple8Z —
design, the biaryl rings were thought to be introduced by 83 — 84). Pictet-Spengler reaction o85 with a series of
Suzuki-type couplings. A bromomethyl group was fixed at tryptamines and then derivatization of the resulting secondary
position C(3) to facilitate the introduction of a broad range amino function of the tetrahydr-carboline furnished library
of substituents at this position via nucleophilic substitution. 2.19.
For the actual solid-phase synthesis, bromo- and iodo-
substituted aromatic carboxylic acids were first attached to
Wang resin to gived’2. Suzuki coupling to readily available
boronic acid71 furnished hydroxymethylthiophene interme- Entries in Table 3 refer to those libraries that have yielded
diate 73. Bromination of the resin-bound3 using 2 equiv agents with binding affinity toward G-protein coupled
of NBS in THF containing 2% water occurred in high yield receptors (GPCRs). Within the table are libraries active
without compromising the linker. Bromid&4 in turn was against opioid receptors (libraries 3.3.5), serotonin recep-
subjected to a second Suzuki coupling with a host of aryl tors (libraries 3.6 and 3.7), somatostatin receptors (libraries
and heteroaryl boronic acids to give the 2,5-biaryl-3- 3.8-3.9), and assorted miscellaneous receptors (libraries
hydroxymethylthiopheneg§5. Conversion of the hydroxy  3.10-3.15).

Libraries Yielding G-Protein Coupled Receptor
Agonists and Antagonists
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Figure 22. Biological activities of Ellman’s turn mimetic librargt3

Several focused libraries éfopioid ligands based on the
Glaxo Wellcome lead SNC-8®@8 were synthesized at
Organon (Figure 20)-% Initial SAR studies indicated that
the aryl methoxy and piperazinyl methyl groups were not
critical for ¢ opioid affinity, but theN,N-diethylcarboxamide

o o
R*3CH,NH H i+3
@\H&S\S/\H;OMS RTGHaNH, @HJ%S\S/\H;NVR”

118

Ri+2 o
i+1
o O. R
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.\ﬁ T AL
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H o]
RM—)\NJY
S’ﬁn\/N\Rifva

Libraries 3.8, 3.10%8213

In complementary optimization libraries 3.2 and 3.3,
piperazine replacements (cyclic diamines) &hslubstituted
piperazines were investigated (Figure 20n these libraries
the diethylcarboxamide group was retained. None of the
cyclic diamines were as active as piperazine, but a 4-fold

was an essential structural feature. This is represented byimprovement in binding affinity was observed when pip-

structure89: ¢ opioid IG5, = 4.1 nM, and>1000-fold
selective versus the andk opioid receptors. In an effort to
further explore the SAR, four optimization libraries were
prepared. Libraries 3.1a and 3.1b relied on REM resin

eronyl was substituted for allyll0G ICso = 1.4 nM.
Reintroducing the dimethyl groups and piperazine stereo-
chemistry as per SNC-80, gavi01 with subnanomolar
potency against thé opioid receptor.

methodology to strategically target the carboxamide group A solution-phase synthesis was developed for the prepara-

for modification. In this chemistry, piperazin€® and 91
were coupled to REM resin to give est@? and stannane
93, respectively. Selective deprotection of the-butyl ester
group with TFA furnished the corresponding acid, which in
turn was converted to either an ester or amigi2 { 95).
Stannan®3 was subjected to Stille coupling to 10 aryl and
heteroaryl bromide98— 94). Release of library compounds
was achieved after quaternization of res@#sand 95 with
allyl bromide and Hofmann elimination (Hunig's base, 18
h, 20 °C). No significant improvement in activity was
observed.

tion of 3-aryloxy-2-propanolamine libraries (library 3.6,
Figure 21)Y?° Specific interest in this class of compound
stems from an interest in identifying dual affinity 5-IhT
and 5-HT re-uptake ligands as potential antidepressants with
improved side effects. The library design focused on modify-
ing pindolol 102 (partial 5-HT,4 agonist). A diverse set of
amine and phenol synthons were utilized in the library. These
were obtained from commercial sources and in-house
“privileged structures”, as well as selections based on amine
fragments from serotonin re-uptake blockers and substituted
phenols from 5-HT, ligands. Binding data were first
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Figure 23. Neuropeptide Y-1 antagonists from library 324.
obtained on purified mixtures containing up to 100 com-

pounds per well, then deconvoluted to yield single com-

pounds. Several potent 5-Hiligands were identified. The

\

spontaneous
cyclization ,

heterocycles. Turn mimetics have shown activity as integrin
antagonist3® human neutrophile receptor (fMLF) inhibi-
tors28” and selective agonists against somatostafiti-and

simple substituted phenols were found to be superior to the melanocortin-28

indole in pindolol102 The spirocyclic amine found ib07—
110 was the only amine to give consistent levels of dual
activity (binding at serotonin re-uptake receptors and 5HT
receptors). Compountil0demonstrated nearly full agonism
at 5-HT;4 and potent re-uptake blocking properties. Com-
pound110was found to be 65% orally bioavailable in the
rat (3 mg/kg) possesingta, = 3.0 h.

Ellman published a full report on the synthesis of a turn
mimetic library (libraries 3.8 and 3.10; Figure 22¥13The

A full disclosure of the library synthesis (library 3.9) and
screening of Merck’s selective somatostatin receptor agonists
was published this past ye&#: 288

Neuropeptide Y, found in both the peripheral and central
nervous systems, is believed to be involved in the regulation
of feeding, energy metabolism, vascular tone, learning and
memory, and the release of pituitary hormones. To date, six
receptors of this family have been characterized pharmaco-
logically. Several antagonists of the NPY-1 receptor have

synthesis takes advantage of a facile intramolecular-cyclativebeen reported in the literature. One class of compounds

thiol Sy2 displacement, simultaneously cleaving material

discovered at Lilly is the benzimidazoles, represented by

from resin and creating the penultimate 9- and 10-member structure123 (Figure 23)2% The potent NPY-1 antagonist
rings. Preliminary reports of this chemistry have appeared was obtained following extensive medicinal chemical opti-

in the literature as well as multiple biological activities

mization, starting from the 8M in-house screening hit22

associated with this interesting class of medium-sized Using the combined applications of computational chemistry
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Figure 24. Human neurokinin-3 receptor antagonists.

and parallel solid-phase synthesis, further optimization of of aldehydel24 with N-methyl-2-aminoethylpyrrole. How-
123was undertaken. Computer modeling suggested that theever, the structure of the expected prodL27 was incon-
interactions between the distal piperidine group and salient sistent with its spectroscopic data. It turned out that, in this
residues in the operative NPY-1 model may not be optimal particular case, the intermediate imil26 undergoes a
for high affinity binding. With this hypothesis in mind, spontaneous PicteSpengler cyclization affording tetrahy-
library 3.14 was constructed to explore alternative amines. dro-5-aza-indold 28 This is thesecondsolid-phase synthesis
Chemistry was carried out via the reductive amination using example where the occurrence of an unanticipated side
resin-bound aldehyd&24and ca. 100 amines. Amines were reaction yielded a biologically active agefit.

selected by initially searching the ACD database of com-  An interesting application of combinatorial library syn-
mercially available primary amines (6642 matches). The thesis is in the rapid evaluation of “competitor compounds”.
“master list” was reduced in a first round by discarding It is not uncommon in the pharmaceutical industry to have
amines containing carboxylic acids and M¥250 (1636 multiple companies simultaneously pursue drug discovery
matches) and in a second round by similarity clustering (577 programs focused on an identical molecular target in the race
matches). A final list of amine synthons was generated by to be first to market with a breakthrough drug. For this
human selection te=100 amines. Some 880 compounds  reason, when a competitor publishes the structure and
were prepared in the library and each evaluated against NPY-biological activity of a “hot target”, other research groups
1. Only one compound appeared more active tha® and will prepare this compound and use it as a benchmark against
that was a compound obtained from the reductive amination their own series. In many instances however, much of the
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Scaffold generation:
”

S R
g Glyaso Glyaso
§——'Asp335 ol S Asp3se
—Tyra00 search & fit

g A
& ASPao2
—Hi hydrophobic | B2
1S404 interaction
0]

NHR®
residues in K channel —
targeted for interation Asp402 136
between small molecules Tyr400
Library synthesis:
y Brj©\/ LB H HBr . Br Ao
PPhs
. NH, Ho:C . PPh. KOtB!
@\/N\/\//S\\ 22 @\/N\/\//S\\N 3 _*OBu
o 0 O 0g
137 138
H HBr 1. ArB(OH)g, Pd° N HAI2
2. BrCHoCN, DIEA Ga N N =
@\/ N\/\//Sg N F Ar1 \/\//s\: Al’1
oo § ¢ %o
139 140
AP
Amine j@\/\
THF
——  R°HNOC A prt
Library 4.7
(400 members)

Cl !
PrHNOC I & I

143: IG5 = 5.8 uM

142: ICs0=2.9 pM
Figure 25. Potassium channel blockers obtained from Biosym/MSI’s ligand design program LUDI and parallel syfthesis.

Multidrug resistance pump inhibitors

o
144: (-)-stipiamide
Protein kinase C activators: Antiestrogens:
OH " OH
HO HO o NHCOR
146: Estradiol . 207
HON Library 5.4
145: (-)-indolactam V Library 55156
Antifungal agents: Antiviral agents:
R ? ? T Rz
Y@ ‘\‘\\=/\/\COZH o '
] e
X T NF N
OH HO OH HO
; 141
147: Kramerixin Library 5.15%® 148: Prostaglandin Ep Library 5.16

Figure 26. Natural product-based libraries.
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SAR around the structure is unpublished and kept secret, An interesting new series of phenyl substituted stilbenes
although this information can be invaluable in enhancing as voltage gated potassium channel blockers were described
one’s own lead series. Library 3.15 is an optimization library by Lew and Chamberlin (library 4.7, Figure 28}. The
synthesized at SmithKline Beecham and designed to explorestilbene pharmacophore was computationally designed using
the SAR requirements of the 3,4-diclorophenylpiperidine LUDI, a Biosym/MSI ligand design program, and predicted
class of NK-3 receptor antagonists (Figure ﬁ)ThIS class to block the potassium channel. A combinatorial library of
of agent was first reported by Sanofi (e_g_, SR 1428m_9), LUDI hits was generated fUrniShir),ng leads142and143

but SAR data was virtually nonexistent in the literature. for further studies.

Using a combinatorial chemical approach, SmithKline was
able to rapidly generate analogues of interest. This was
carrried out synthetically by sequential reaction of the
bifunctional derivativel130, derived from the key (3,4-
dichlorophenyl)-3-propylpiperidine pharmacophore, with
amines and electrophiles (library 3.1%32a—c).188

Libraries of Cytotoxic and Antiinfective Agents

Table 5 contains 17 libraries subdivided into two categories
demonstrating cytotoxic activity (libraries 5:5.5) and
antiinfective activity, including antibacterials (libraries 5.6
5.13), antifugals (libraries 5.146.15), and antivirals (librar-
ies 5.16 and 5.17). One reoccurring theme in this set of
Lo . . entries is the use of natural products as templates or starting
Libraries Yielding Non-GPCR Ligands points for library design. Examples of this include )¢

Libraries yielding active structures against non-GPCR StiPiamide-based library 5.‘flestradiol-6based library 5747
molecular targets are delineated in Table 4. Table 4 is (_—)-mdolac'égm V-based library 5357 kramerixin-based
subdivided into integrin receptors (libraries 44.5), ion library 5.15% and the prostanoid-based library 5.16 (Figure

141
channels (libraries 4.6 and 4.7), and miscellaneous target526|)'. d bed . ¢ librari . techni f
(libraries 4.8-4.12). sis described a series of libraries using a technique o

S o _ ~“simultaneous addition of fuctionality” in which chemically
Three of the five libraries describing integrin antagonists (gactive polyhalogenated heterocycles are treated with excess
were direct takeoffs of the well-known -Arg-Gly-Asp-  pycleophiles to create libraries possessing antibacterial
binding motif linking basic guanidyl and carboxylic acid activity (libraries 5.115.13)!° No specific compounds were
residues through an optimal spacer. Library 4.1 utilizes an jdentified from the libraries. Polyhalogenated heteroaromatics
azapeptide-type spacéwhile isoxazole linkers were utilized  as well as the corresponding reactive fluoronitroaromatics
by DuPont (libraries 4.3 and 4.8% A new binding motif, ~ have been used extensively over the past several years in
p-Prod-Tyr-p-Leu-, identified in Selectide’s library 4.2 is  the synthesis of biologically active libraries and other library
of interest as it is a neutral ligarf€f although its affinity is constructs of medicinal interest (Figures 6 and 7).
rather weak (14:M) compared to classical charged ligands
possessing hanomolar affinity. Optimization library 4.5 was
part of a broad-based medicinal chemistry effort to identifiy
potent integrin antagonists incorporating piperidine as a
surrogate for the guanidyl residue.

Acknowledgment. Many thanks to Ms. Karen Rivera for
her invaluable assistance in the preparation of this manuscript
and for her expertise and perseverance in chemical structure
drawing.

Table 1. Chemical Libraries Targeted for Proteases
Metallo-proteases

Library: 1.1
Name: Phosphinic peptide
CO,H

Size: 400 members o o o
Affiliation: Dive, V.; et al. [64] Ac-Aa;-Phey(PO,-CHy)Ala-Aay-NH —_— H i H
Note: Twenty peptide mixtures ze 7L )J\N NP N\/U\NH
each containing a single Aa, H : OH 2
with a mixture of 20 Aay. % o =

Enzyme: Somatic angiotensin converting enzyme (ACE)
Activity: K; =12 nM, ACE (N-domain); K; = 25 uM, ACE

(C-domain)
Library: 1.2 o R cl
Name: Phosphinic tripeptide 4 1 .
Size: Not defined AN ?\)\CO-NH-AarNHz - Ho 9 o9
Affiliation: Dive, V.; et al. [230] on cl VN R B i
Note: Several libraries prepared. R N OH NH,
H o o)
/
N

Enzyme: MMP-11 (stromelysin-3)
Activity: K; = 0.9 nM (K; = 24 nM, MMP-2;
Ki=7 nM, MMP-9; K; = 32 nM, MMP-14;
K; = 36 nM, MMP-1; K; = 117 nM, MMP-7;
K; =5 nM, MMP-8)
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Table 1. (Continued)
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Library: 1.3

Name: Diketopiperazine

Size: 1225 members

Affiliation: Affymax Res. Inst. [221]

Library: 1.4

Name: Diketopiperazine

Size: ca. 700-900 members
Affiliation: Affymax Res. Inst. [221]
Note: Three-component Ugi
condensation.

Library: 1.5

Name: Urea-based hydroxymate
Size: Not defined

Affiliation: Lauhon, C. T.; et al. [247]

Aspartic acid proteases

Library: 1.6

Name: Pseudotripeptide

Size: 380 members

Affiliation: Roques, B. P.; et al. [59]
Note: Two positional scanning
libraries.

Library: 1.7

Name: Hydroxyethylamine

Size: ca. 170 members
Affiliation: Ellman, J. A.; et al. [95]
Note: Six iterative libraries

for lead optimization.

Library: 1.8

Name: Amide derivative

Size: 300 members

Affiliation: Bayer Corp. [47]
Note: Solution-phase synthesis
using polymer bound reagents.

N
\Rs
HS/\HkN/‘\]f

o R

. SH
HoN Aa, 'Aaz'OH

(0]

HS/\)J\N

OMe

o3

NO,

Enzyme: Collagenase-1
Activity: IC59 = 47 nM (IC59 = 1200 nM, gelatinase-B;
>4000 nM, stromelysin)

OMe

Enzyme: Collagenase-1
1C50 =21 nM (IC5o = 1300 nM, gelatinase-B)

o)
HO_HLN\(@/\NJ?\”O \©

Enzyme: Gelatinase (MMP-2)
Activity: IC5 = 300 nM

Enzyme: Aminopeptidase A
Activity: K= 3.2 nM

Cl

P

H OH
O/\”/N\)\/N
(e}

Enzyme: Plasmepsin Il (P. falciparum)
Activity: Ki= 2 nM (K; = 9.8 nM, cathepsin D)

CF33\©\ Ny o OH
— \N Cl
(0] N

/\'Or N

Enzyme: Cathepsin D cl

Activity: IC5o = 320 nM
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Table 1. (Continued)
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Serine proteases

Library: 1.9
Name: Benzisothiazolone
Size: 60 members

Affiliation: Bristol-Myers Squibb [243]

Note: Encoded split-pool
library using Rytags.

Library: 1.10

Name: Peptide ketothiazole
Size: ca. 150 members
Affiliation: Organon Labs [3]

Library: 1.11
Name: o-Hydroxycinnamate
Size: 112 members

Affiliation: Porter, N. A.; et al. [184]

/\N

Library: 1.12
Name: Phenylamidine
Size: 10 members

Affiliation: Hoffmann-La Roche [22]
Note: Combinatorial docking procedure

led to selection of library compounds.

Library: 1.13

Name: Benzothiophene

Size: 346 members

Affiliation: Sphinx Pharm. [114]
Note: Solid-phase Mitsunobu

chemistry and parallel purification.

Library: 1.14

Name: Cyclohexanone peptide
Size: 400 members

Affiliation: Seto, C. T.; et al. [2]

——
/N/\O,&O
g
O\ HN
—_—
: 2 O S/\§
Y Yy
R o]
—
CO- Aaz-Aa1 NH2
HN R
—-
HoN NH
o
—

3
HO S OR2

R, O o R
—
Cbz\N/H]/N NJ\(OH
! H
H O o

0]

@El:\/\ )l\/\/U\ /\©\OCH3

Enzyme: Tryptase (human mast cell)
Activity: IC50 = 0.23 pM

Enzyme. Factor Xa
Activity: ICgg = 0.43 uM
(ICs0 = 4.8 uM, thrombin)

NH

CONH-Lys-Tyr-NH,

o}
o0
“N OH
M

Enzyme: Thrombin
Activity: Photo-reversible inactivation

2

Enzyme: Thrombin
Activity: Kj=9.5 nM
(K; = 520 nM, trypsin)

O 0\/\NH302 (/5\5
0 )
HO S O o/\/N

Enzyme: Thrombin (human)
Activity: Kyss = TUM (0.02 uM, Factor Xa)

0
AL L

Enzyme: Factor Xa (human)
Activity: Kass = 5.0 nM (2.3 pM, thrombin)

HN NH
O 'r:ll N
(o] H (0]

Enzyme: Plasmin
Activity: Ki= 5 uM
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Library: 1.15 R! o
Name: 1,2,5-T hiadiazolidin-3-one
Size: ca. 12 members

Affiliation: Groutas, W. C.; et al. [128] R s R3
Note: Solution-phase synthesis.

Library: 1.16
Name: Disubstituted xanthenes
Size: ca. 12 members

Affiliation: Pryor, K. E.; et al. [186)
Note: Two-phase colorimetry
based screen for inhibition.

HO-(Aa)-Aa{” SO O

Library: 1.17

Name: Tetrahydroisoquinolin

Size: 2560 members R
Affiliation: Sergheraert, C.; et al. [232] N
Note: Solution-phase synthesis.

Library: 1.18

Name: Sulfonamides
Size: 198 members
Affiliation: Novartis [252]
Note: Optimization library.

0 e 0k

Cysteine proteases

Library: 1.19

Name: Acylaminobutanone

Size: 18 members

Affiliation: SmithKline Beecham [239]
Note: R encoding.

R

AR Ol

Gl
oo

Enzyme: Elastase (human leukocyte)
Activity: Kinac/K; = 95,000 M's™!

Enzyme: (human leukocyte) Elastase
Activity: K; = 86 uM

Enzyme: Prolyl endopeptidase ( Trypanosoma cruzi)
Activity: ICgo = 9.0 "M

OH

R‘
ozs\ O/\
Enzyme: Thrombin

Activity: K; = 147 nM (55% oral bioavailability (30 mg/kg,
p.o.) in rat; ty;, = 120-180 min; C = 3.36 mg.mL'1

Enzyme: Cathepsin K

Activity: Kj,app = 1.3 nM (K;,app = 90 nM, cathepsin L;
Kiyapp = >1000 nM cathepsin B)

] @%%

Enzyme: Cathepsm L
Activity: Ki,app = 18 nM (Kj,3pp = 16 nM cathespin K;
Ki,app = >1000 nM, cathepsin B)

\
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Table 1. (Continued)
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Library: 1.20

Name: Tripeptide Michael acceptor
Size: ca. 500 members

Affiliation: Agouron Pharm. [66,153]

(0]
H
B

N
H 9

<
\

L
|

Enzyme: Human rhinovirus 3C protease
Activity: Kops/l = 260,000 M's™

a Asterisk (*) indicates point of attachment to the resin.

Table 2. Chemical Libraries Targeted for Nonproteolytic Enzyfes

Kinases and phosphatases

Library: 2.1
Name: 1,4-Benzodiazepine
Size: 1680 members

Affiliation: Ramdas, L.; et al. [187] L ——
Library: 2.2 R2_ _R3
Name: Substituted purine N7
Size: Not defined N
Affiliation: Chang, Y. T.; ef al. [44] N \>
Note: Multiple solution- and . P —
y o - N
solid-phase libraries. R*-N" N |
R R

Library: 2.3

Name: Octapeptide

Size: ca. 110,000 members .
Affiliation: Watterson, D. M.; et al. [150]
Note: Positional scanning.

H-Arg-Lys-Lys-Aas-Aay-Aag-Arg-Arg-Lys-NH, =3

Library: 2.4a-c

Name: Amino acid amide

Size: 4320 total members
Affiliation: Mitotix, Inc. [14]

Note: Three libraries based on Ugi
reaction with phosphate surrogates.

o R y
R1)’\NJ\H/N\R4
R2 O

"
HO

Enzyme: Src protein tyrosine kinase
Activity: ICgq = 35 pM

Cl
HN

N
oI
S

Enzyme: Cyclin-dependent kinase 2 (CDK2)
Activity: ICsq = 33 nM (ICgp = 28 nM, CDK1)

NH,

H-Arg-Lys-Lys-Tyr-Lys-Tyr-Arg-Arg-Lys-NH,

Enzyme: Smooth muscle myosin light chain
kinase (chicken)

Activity: ICso = 50 nM (>40,000-fold selective
versus calmodulin-regulated protein kinase)

_OH
O/\ﬁ\gH

(o]

HO.__O /@/U\N \O

o
HO. o
(o]
0._~0

Enzyme: Cdc25 phosphatase
Activity: ICgo = 0.7 uM
(ICsp = 82 uM, tyrosine phosphatase PTPIB)
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Table 2. (Continued)

Transferases
Library: 2.5 « F F
| Name: Trifluoronitrophenoi HO OR HO o
| Size: 12 members - — VW\/\(
. Affiliation: Hardcastle, I R.; et al. 9] O,N F ON F
i F F
Enzyme: Farnesyltransferase (rat)
Activity: 1Cgp = 6.3 uM
(IC50 = 12.5 uM, geranylgeranyl protein
transferase-l)
Library: 2.6
Name: Methionine biaryl WO o
Size: 31 members N
Affiliation: Abbott [8] g~ O O PN _— | J S O 0
Note: Solution-phase B OH \.)I\OH
optimization library. O \| ol :
SMe \
) SMe
Enzyme: Farnesyitransferase
ACtiVity: |Cso =0.7nM
(>10,000-fold selective vs. geranylgeranyl protein
transferase-1; 21% orally bioavailable, dog)
Library: 2.7 s~ O s~
Ngme: Blphepyl methionine o — o
Size: Not defined *
Affiliation: Abbott [101] N OH N OH
H
RHN O H N O H o}
: “oH
Enzyme: Farnesyltransferase (FTase)
Activity: IC5 = 8.0 nM
. NH,
Library: 2.8a,b )\ Hy
Name: Triazine NN —
Size: 643 members 52 PPN . NI ~N
Affiliation: Abbott [89] R®R®N” N TR . )\N/)\Q/NHZ
H
Target: Erm methyltransferase
Activity: ICso =4 pM
Reductases and dehydratases
Library: 2.9 NH, Cl
Name: Dihydrophenyl triazine NH, B )\
Size: 64 members )\ | /—X NP N NO,
Affiliation: Chui, W.-K_; ef al. [139] NN — )\\ )<
Note: Three-component conden- PN /K ~(CHy) H.NT N
sation using aniines, ketones, A" N " Enzyme: Dihydrofolate reductase
idine. .
and cyanoguanidin Activity: ICgo = 6.0 nM; K; = 200 uM
Library: 2.10
Name: Polyamine peptide conjugate
Size: 576 members )
Affiliation: Bradley, M.; et al. [209] H-Aay-AagNH™ " H-Trp-Arg-NH™ "
Note: Three identical libraries m—-

produced in solution on PEGA
resin, and on Tentagel to compare
success of solution- versus
on-bead aseavs.

H-Aay-Aaz-NH._~_N-

R=Hor C(0)0” > Ph-CONH—@

NH
H-Trp-Arg-NH™ "

Enzyme: Tripanothione reductase
Activity: K; = 100 nM

Library: 2.11 o
Name: B-Carboxamido phosphonate R o
Size: 15 members N —— Y\O
I N NH O N

Affiliation: Monsanto Co. [202] I,/ \)\/ it I N NH 9
Note: Solution-phase synthesis using N E\OH N'\)\/ P—OH
solid-phase capture reagents. HO HO

Enzymes: Imidazole glycerol phosphate dehydratase

(Cryptococcus neoformans)

Activity: Ki = 80 nM
Library: 2.12
Name: Amide o cl QO Me
Size: 768 members )]\ N ~
Affiliation: Du Pont Agricul. [113] R “NRZR® _— Me H/\©\

F
F ¥ Br

Note: Solution-phase synthesis.

Enzymes: Scytalone dehydratase
Activity: K = 0.05 nM
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Table 2. (Continued)
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Other enzymes

Library: 2.13

Name: 1,3-Dioxane-4,6-dione
carboxamide

Size: ca. 113 members
Affiliation: Gelb, M. H.; et al. [33]
Note: Solution-phase synthesis.

Library: 2.14

Name: Dansyityrosine

Size: 34 members

Affiliation: Tondi, D.; et al. [225]

Library: 2.15

Name: Substituted thiophene
Size: ca. 100 members
Affiliation: Merck Frosst [93]

Library: 2,16

Name: Thiodepsipeptide
Size: 38 members
Affiliation: Merck [84]

Library: 2.17

Name: 1-Azafagomine peptide

Size: 125 members

Affiliation: Bols, M.; et al. [148], [149]

Library: 2.18

Name: B-Aminothiol peptide

Size: ca. 600 members

Affiliation: Roques, B. P.; et al. [151]

Library: 2.19

Name: Tetrahydro-B—carboline
Size: 48 members

Affiliation: Jung, G.; et al. [250]

Cl
OH O OH O
3 S
Ny aa
AN H — o Np cl
R? o” "0

Enzyme: Phospholipase A, (human group lIA)
Activity: X, (50) = 0.022

SO oo O/Y
NHso2
o NH

SO,
OO
N /N\
SN
Enzyme: Thymidylate synthase
Activity: K; = 1.5 uM
N~
XR l
S/I\N/
. 7\
HO,C-Ar g~ ~Ar, — 7\
ORAs
X=NR, S OMe
R
Enzyme: Phosphodiesterase-4 (PDE-4)
Activity: IC50 = 8.0 nM
j\ CHs 0
A_S., S,
2 .
0~ OH O~ OH

Enzyme: IMP-1 metallo-B-lactamase
Activity: IC59 = 0.4 nM (ICsp = 180 nM,
CcrA metallo--lactamase)

OH
HO HN \
HO . HO&‘ ~ /Q
NH —
HS(;%\\N/\[rAaa-Aaz-AarNHz HO N g )s
O O/ N ""OH
0=G  CONH,
Enzyme: B-galactosidase (yeast) OH

Activity: K; = 20 pM

N7 NH
SH H (0]
SH . HoN N OH
HoN Aay-Aa;-OH N
s vnme— O O
R® O
SO,NH, OH
Enzyme: Bacterial protein tetanus toxin (TeNt)
Activity: K;= 5.0 uM
2 _R3
R { NR — )
N
N R! H \g/\NHZ
H N HoN

Enzyme: DNA gyrase
Activity: [Cgp = 10 uM

a Asterisk (*) indicates point of attachment to the resin.
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Opioid receptors

Library: 3.1a,b

Name: N-Diarylmethylpiperazine
Size: ca. 125 members
Affiliation: Organon Labs. [55]
Note: Solid-phase synthesis
using REM resin.

Library: 3.2

Name: Diarylmethylamine
Size: 20 members

Affiliation: Organon Labs. [11]
Note: AICl;-mediated diethyl-
aminolysis of Wang esters.
See library 3.3

Library: 3.3

Name: N-Diarylmethylpiperazine
Size: 46 members

Affiliation: Organon Labs. [11]
Note: AlCl3-mediated diethyl-
aminolysis of Wang esters.

See library 3.2

Library: 3.4

Name: Cyclic imide

Size: 30 members

Affiliation: Organon Labs. [12]

Library: 3.5

Name: Pseudopentapeptide
Size: 20,000,000 members
Affiliation: Simonin, F.; et al, [13]
Note: Positional scanning at Aas.

AW 7
Y=y P
B ¢

Yoo
®

=

Target: § opioid (human)
Activity: IC50 = 3.0 nM
(ICsp = >10,000 nM, p (rat))

(¢]
BACS
J

®
N
(~
Receptor: § opioid (human)
Activity: IC5p = 8 nM

BASSS
O
L)

Receptor: § opioid (human)
Activity: 1Cg0 = 1.4 "M

(ICs0 = >10,000 nM, p (rat);
ICsq = 3900 nM, x (guinea pig))

\©\S,N .
o]

A

0

Receptor: & opioid (human)
Activity: ICgp = 16 M

SN

O

Cl

Receptor: Opioid receptor-like 1 (ORL-1, human)
Activity: K; = 517 nM (K; = 114 nM, x-opioid;
K; = 1300 nM, p-opioid; K; = 11000 nM, 3—opioid)
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Table 3. (Continued)

Serotonin receptors

Library: 3.6 Z

Name: Aryloxy-2-propanolamine R'— | » o
Size: Not defined (large) A N

Affiliation: Merck [229] O/j‘/H\NRZ I °© i N

Note: Solution-phase parallel

synthesis. OQ

Receptor: 5-HT44 (human receptors in HeLa
cells)
Activity: K; = 1.0 nM

Library: 3.7 Me
Name: Bisaryl sulfonamide NMe Ci (\ NMe
Size: >12 members ArSOZHN N\) N SO,NH N\)
Affiliation: SmithKline Beecham [30] > S \C[

Note: Solution-phase optimization OMe OMe

library. Receptor: 5-HTg (human cloned receptors in Hela cells)
Activity: pK;= 9.2 (selective vs.13 subtypes and other
receptors); pK, 8.5 (5-HT simulated adenylyl cyclase;
antagonist)

Somalostatin receptors

Library: 3.8 fo) 2 NH,
Name: B-Turn mimetic R! R /\)
Size: 172 members m/gzo — O H
Affiliation: Ellman, J. A.; et al. [213] .S N w—— 2 o
N U E/Y

s/\/N

Receptor: Somatostatin-5 ( hsstrs, human)
Activity: IC5o = 87 nM (ca. 5-fold selective vs. hsstry;
>10-fold selective vs. hsstrp.4)

N
\
Library: 3.9 o \/O\/H
Name: Amino acid amides IS N. _NR® — HoN N NH
Size: 131,670 HN N e A
* RZ O o o @\
S

Affiliation: Merck [158]

Receptor: Somatostatin-2 (sstr 2; human)
o] Activity: Kj = 0.04 nM, agonist (>1000x selective
H NH vs. sstr 1,3-5)
Oy N
(o}
N Ve vV
HaoN. N NH
H

"OlLa L g
= Hof H
NH h, N AL I N
i N° N 0,8”
\H/\H N O o a/
(¢]
g ®

Receptor: Somatostatin-5 (sstr 5; human)

Activity: Ki= 170 nM, agonist (>23x selective vs. Receptor: Somatostatin-1 (sstr I; human)

sstr 2; >1000x selective vs. sstr 1,3,4) Activity: K; = 64 nM agonist (-23x selective vs. sstr 2-5)
Other receptors
Library: 3.10 o >
Name: B-Turn mimetic (\

Size: 951 members W)L /S: N
Affiliation: Ellman, J. A.; ef al. [96] — Q N
Note: 951 compounds selected from §T
alibrary of 5544 compounds.

Target: Melanocortin-1
Activity: EC5q = 42.5 UM (agonist)
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Table 3. (Continued)
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Library: 3.11

Name: Tripeptoid

Size: 328,509 members
Affiliation: Eberle, A. N.; et al. [99]

Library: 3.12

Name: Dipeptide

Size: 96 members

Affiliation: Novo Nordisk [5]

Note: Optimization library based on
ipamiorelin.

Library: 3.13

Name: Chalcone

Size: ca. 40 members
Affiliation: Natu, A. A.; et al. [63]
Note: Solution-phase synthesis
of two sets of nine combinatorial
mixtures.

Library: 3.14

Name: Benzimidazole diamine
Size: 84 members

Affiliation: Lilly [205]

Note: Optimization library based
on LY344090. Most active
compound derived from
unexpected Pictet-Spengler
cyclization.

Library: 3.15

Name: Dichlorophenyl-3-propylpiperidine
Size: 49 members

Affiliation: SmithKline Beecham [188]
Note: Solution-phase synthesis. Focused
library based on Sanofi lead structure.

S
R°HN N *

HZ
0 CHy O
RSN N\_)L ~CHy
CH, 0 X

Cl

HO

N\)\N/\H/NHZ

Receptor. GRP/bombesin
Activity: Kp = 3.40 uM

NH,
Receptor: Melanocortin-1 (human)
Activity: Kp = 1.58 uM

Receptor: Growth hormone segretagogue
(rat pituitary cell assay)
Activity: ECgo = 1 nM (agonist)

NO,
O OO ‘

Receptor: Leukotriene B, (human whole blood)
Activity: ICsq = 18.5 uM (inhibition of LTB, formation)

@]

L y
! V4
e

Receptor: Neuropeptide Y-1 (NPY-1; human)
Activity: K = 13 nM (antagonist)

[0}
P anY
N N N W
Cl \ SN

Cl
Cl

Receptor: Neurokinin-3 (human)
Activity: K; = 35 nM (antagonist)

a Asterisk (*) indicates point of attachment to the resin.
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Table 4. Chemical Libraries Targeted for Non-G-Protein Coupled Receptors (non-GPCRS)
Integrins
Library: 4.1
Name: Azapeptoid
Size: 6 members
Affiliation: Kessler, H.; et al. [77]
o g o] NH o] o]
H | H . /\/\)J\ H H
HzN\n/NN,N\n,N\:/U\NHZ HZN)LN N,N\H/N\:)I\NHz
NH RE O < H H oo L
CO,H CO.H
Target: o, B3 integrin
Activity: IC5o = 6.8 UM (ICsq >100 M, adibB3)
o) (0]
H H H
NN
< ~
HaN"N"F COH
Target: oypP3
Activity: IC50 = 2.7 uM (IC50 >100 pM, ovB3)
Library: 4.2
Name: Pentapetide
Size: Large NH
Affiliation: Selectide Corp. [223] 2
Note: L- and D-amino acids was OH
in split-pool synthesis. On-bead
screening. . P : 0
H-Aag-Aag-Aag-Aag-Aarlys Tyr—(g)  — Z /\n/ /:\[r \)J\ /\n/N\)]\ OH
1 0
OH
Target: oy,B3 integrin NH,
Activity: ICgo = 14 pM
Library: 4.3

Name: Isoxazolinyl guanidine
Size: Not defined
Affiliation: DuPont Pharm. [190]

o}

H2N>FH JJ\o/\(>
HN '“N\A/\ﬂ/ N~ CoH

N-——O

"z

Library: 4.4

Name: Isoxazolinyl guanidine
Size: Not defined

Affiliation: DuPont Pharm. [190]
Note: Optimization library based
on lead identified in library 4.3.

K L
ZT\WN/\HLOH
H

NH O—-N NHSO,R
Library: 4.5 H
Name: 5-Substituted pyridine ) CO;
Size: 15 members R
Affiliation: R. W. Johnson Pharm. [104] N S
Note: Optimization library. Hol _
N N

ot p

Target: o, B3 integrin
Activity: ICsg = 23 nM

S0,

Target: o, P integrin
Activity: ICgo = 0.7 nM antagonist

COLH
I |
N A S
Hol
N N

Target: GPIlIb/llla integrin
Activity: ICgo = 1.5 nM (antagonist)
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lon channels and transporters

Library: 4.6

Name: N,N-Dialkyldipeptidylamine
Size: 30 members

Affiliation; Parke-Davis [195]
Note: Solution-phase synthesis.

Library: 4.7
Name: Substituted phenyl stilbene
Size: ca. 400 members

Affiliation: Chamberlin, A. R.; et al. [145]

Note: Kenner's safety-catch
linker used.

Library: 4.8
Name: b-Hexapeptide
Size: ca. 400 members

Affiliation: Rothman, R. B.; et al. [192]

Note: Kenner’s safety-catch
linker used.

Other non-GPCR

Library: 4.9

Name: Amidinonaphthy! ether
Size: ca. 145 members

Affiliation: Bradley, M.; et al. [194]

Library: 4.10
Name: Phosphopeptide
Size: 900 members

Ac-D-Aag-D-Aag-D-Aay-D-Aag-D-Aas-D-Aay-NH,

Affiliation: Lawrence, D. S.; et al. [143]
Note: Disulfide link to resin. Cleavage with
dithiothreitol in Tris buffer to give peptide

conjugates in assay-ready solution.

ros
RCO-HN-Tyr-GIu-GIu-IIe-HN(CHg)zéH

Target: N-Type voltage sensitive calcium channel
(in IMR-32 cells)
Activity: ICgo = 40 nM

Target: KV1.3 potassium channel
Activity: ICso = 2.9 uM ('251-ChTx binding assay)

NH NH

@orr

nmu
mu

NH,

HN.__NH,

b

NH
Target: Dopamine transporter
Activity: IC5p = 1.8 uM

— {0

O
Target: Tissue factor/factor Vila complex (human)
Activity: ICso = 4.1 uM

PO,
CO-HN-Tyr-Glu-Glu-lle-HN(CH,),SH

S

HO (O}

Target: Src SH2 domain of Lck
Activity: Kp = 35 nM (Kp = 150 nM, Fyn)
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Table 4. (Continued)

Library: 4.11 1

Name: Dipeptide aldehyde s H o R H (0]

Size: 100 members R NW)J\ )\['(H —

Affiliation: Scios Inc. [102] \lr 2 ” MeO Z N \)J\ N H
O R o} H H

Target: B-Amyloid production
Activity: IC59 = 9.6 uM

Library: 4.12

Name: b-Hexapeptides

Size: 47,000,000 members
Affiliation: Centocor, Inc. [127]
Note: Positional scanning protocol
using D-amino acids exclusively.

. H o>, o
Ac-D-Aag-D-Aag-D-Aa,-D-Aag-D-Aa,-D-Aa-NH N AN
ag 3 4 3 DA NH i \n/ N/\[f NH,
o) H o
T
HN

Target: TNFa.
Activity: ICgo = 0.33 uM (antagonist effect due to
binding of hexapeptide to TNF-o not its receptor)

a Asterisk (*) indicates point of attachment to the resin.

Table 5. Chemical Libraries Displaying Cytotoxic and Antiinfective Activity
Cytotoxic agents

Library: 5.1

Name: Polyene

Size: 42 members

Affiliation: Amdris, M. B.; et al. [4]
Note: Solution-phase indexed
combinatorial library based on

MDR reversing polyene (-)-stipiamide.

R1

Target: McF7 - adriamycin resistant celis expressing
P-glycoprotein (multidrug resistant pump)
Activity: IC5g = 1.45 pM

Library: 5.2
Name: Pentamine

Size: ca. 7,311,616 members
Afiliation: Appel, J. R.; et al. [7] s s . o )
w ST TR e
2 —— HoN N NH
T S Q00 L 54
P K@
Target: 60 different cell lines
Activity: MGICgq = 2.02 uM (mean growth inhibition)

Library: 5.3 o OO
Name: N-Acylated triamine s H |
Size: 454,272 members R \[]/NY\N)\/NH H /(/ |
Affiliation: Appel, J. R.; et al. [7] o i * HoN N\/\N NH
(0] /ﬁ |
Target: 60 different cell lines

Activity: MGICgq = 0.69 uM
(mean growth inhibition)

|

i
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Table 5. (Continued)

Library: 5.4
Name: Estradiol derivatives . OH o
Size: 20 members OH
Affiliation: Poirier, D.; et al. [227] )
(o}
H " N
2 HO " N
HO " WNJ\I/N\H/R %/\HJ\L)
. H R o

Target: T-47D (human breast cancer cell)
Activity: 95% antiproliferative activity at 0.1 uM

Library: 5.5

Name: Indole lactams

Size: 31 members

Affiliation: Waldmann, H.; et al. [156)
Note: Library based on known PKC
activator, (-)-indolactam V.

No single compound identified

Target: PKC activation in Swiss 3T3 cells
Activity: 3-5 fold increase in MARKS translocation
at 200 nM; less efficient than (-)-indolactam V.

Antiinfective agents . R2 i ?l*Q
. | HLN
H

Library: 5.6 ~ N s
Name: Substituted purine N
Size: 2725 members [ j
Affiliation: Isis Pharm. [71] N — N
Note: Solution-phase simultaneous N' = \> N
o AR N
addition of functionalities. (\N )\N/ N (\ NR' NI \>
N cl A Ay (N
R (\N N
Target: S. pyrogenes, E. coli imp-
Activity: "potent broad-based antibacterial profile"
Library: 5.7 o o O o
Name: Quinolone . HOLC PPN
Size: 5 members HO,C NHR = | ”
Affiliation: Chauhan, P. M. S.; et al. [215] | N
, N H
Target: B. Malayi
Activity: EC100 =100 uM
Library: 5.8 0. NH2 E£.C 0y NH2
Name: Disaccharide o 3 oo o
Size: 1300 members [MeO, HOJ o)
Affiliation: Intercardia Inc. [212] X o O—B-Olipid — ca HN(O)CHN 0.0 b P O-(GHa)<CH
Note: IRORI R;tags. HO @ S HO . -(CHy)11CH3
NHC(O)R N__o
HO HO
HO HO
X = R?HN(O)CO- CFs
X= RZHN(O)CHN- Target: S. aureus

Activity: MIC = 6.25 pg/mL
NHz

Library: 5.9 NH,

| N\/‘LN
Name: Peptoid rR!' © 2 o T
Size: 845 members Htll\)L ,h\/lL . —
Affiliation: Chiron Corp. [81,165] hllz/\n/ NH;
R O

Note: Optimization library. 3
Target: E. faecium

Activity: MIC = 5 pg/mL; broad spectrum
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Table 5. (Continued)

Reviews

Library: 5.10

Name: Butenolide

Size: 288 members

Affiliation: Lattmann, E.; et al. [134, 135]
Note: Solution-phase synthesis from
commercially available halogenated
mucochloric acids.

Library: 5.11

Name: Substituted purine

Size: Not defined

Affiliation: Isis Pharm. [119]

Note: Solution-phase simultaneous
addition of functionalities.

Library: 5.12

Name: Substituted pyrimidine
Size: Not defined

Affiliation: Isis Pharm. [119]

Note: Solution-phase simuitaneous
addition of functionality.

Library: 5.13

Name: Substituted pyrimidine
Size: Not defined

Affiliation; Isis Pharm. [119]

Note: Solution-phase simultaneous
addition of functionality.

Library: 5.14

Name: Bicyclic guanidine

Size: ca. 100,000 members .
Affiliation: Blondelle, S.E.; et al. {19]
Note: Positional scanning protocol.

Library: 5.15

Name: Kramerixin analog

Size: ca. 120 members
Affiliation: Fecik, R. A. et al. [68]

Library: 5.16

Name: Prostanoid

Size: ca. 64 members

Atffiliation: Janda, K. D.; et al. [141]
Note: Library created on

soluble support.

Library: 5.17

Name: Cyclopentene-1,2-dicarboxylic
acid derivative

Size: 600 virtual members

Affiliation: de Julian-Ortiz, J. V.; et al. [60]
Note: Compounds identified through
process of virtual library synthesis

and computational screening.

R°REN. X

R1OILO

(o)

NH-NHR
B
RHN—I}I N/)\N—NHR

Me

HO
0 R?
HO' = B!
HO.__O
(o}
X,Ar
X =0, NH

o

HN

(S)

Target: S. aureus (MRSA 96-7778)
Activity: MIC = 8-16 pg/mL

Target: Bacteria
Activity: Not defined

Target: Bacteria .
Activity: Not defined

Target: Bacteria
Activity: Not defined

Target: C. albicans
Activity: MIC = 3-4 pg/mL

HO OH
Target: C. albicans
Activity: MIC = 1.25 pg/mL

o
o \)

Target: Cytomegalovirus (CMV)
Activity: 88% reduction in viral titer (control titer:
6.8 x 10° PFU/mL (plague forming units))

F
HO. 0O
OFt t F
e—
‘;‘ N
H

Target: HSV-1 (plaque inhibition assay)
Activity: |C50 =0.9 ;lM

hat

o}

a Asterisk (*) indicates point of attachment to the resin.
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Table 6. Scaffold Derivatization: (a) Solid Phase, (b) Solution Phase

(a) Solid phase

* Glaxo Wellcome [36]

o 5 ex; 24-95%

 addition of TsBr to resin-
bound alkyne and alkenes;
X=NR, O

e Zeneca [100]

13 ex; 0-72%

» nucleophilic displacement
of resin-bound quinazolines
with oxindols

NO,

MeQ |
NHR
o

* Sun, C.-M. [175]

* 8 ex; 99%

« amine displacement of
soluble-polymer supported
4-fluoro-3-nitrobenzoic acid

R .

/E . o HozcY
AcHN™ "CO.H HJ’!\R1 ‘R
o Yim, A-M. [242] «RPR [197]

* 3 ex; 49-60%

» radical addition of
organomercury chlorides
to dehydroalanine

s Corvas [206]

* 20 ex; 17-83%

» from resin-bound
argininal equivalent

. .
MeoYO P OR .
I MG m(L)\/XH‘NR (RY)

* Kondo, Y. [126]

eca.5ex;

« immobilized organometallic
reagents; R = electrophile, Ph

R? .
|
re-Ngt MeoZC—O—A'

o Finn, M. G. [29]

« Brase, S. [28]
e ca. 9 ex; good yield
« triazene linker

* Jung, G. [189]

* 5 ex; >65%

« from Baylis-Hillman
intermediate;

X = OAr, NR?R?

¢ Sun, C.-M. [203]

¢ 15 ex; 80-95%

« from resin-bound 4-chloro-
methylbenzoic acid; liquid-
phase synthesis; X = CH, N;
n=0,1,m=1,2

* 22 ex; 0-54%

» reductive cleavage of
resin-bound Weinreb
type amides

AAX...AA3-AA2—”J\|'( CFs

» Boehringer Ingel. [183]

H o
3
o=, R N\E/U\OH
OCH3 o R
* Sun, C.-M. [218] o Petillo, P. A. [51}
¢ 10 ex; 75-92% * 7 ex; high purity
* aminolysis of bis-Boc * MeSiCls-mediated
guanidines then acylation; conversion of Fmoc-amino
liquid phase synthesis acid to isocyanate, then
addition of amines
N
4T
R-Aag-Aaz\N N NH O>_© . | H \X/Y
H -
OH NH MeG \_/

o Schotten, T. [17]
* 19 ex; 33-60%
« liquid-phase Suzuki coupling

Oy R®

X LA X
R2 n N-gt NH,
o

» Glaxo Wellcome [147]

* size not defined

« 'NH alkylation of 3-amino-
5-carbomethoxy-1H-
pyridin-2-one to resin-bound
halo acids, then N-acylation

and amination

R

o} Ar-NH,

» Morishima, H. [220]

« Kobe Pharm. {158]

* 7 ex; 24-83%

» triethylborane-mediated
radical addition of alkyls
to glyoxylic oxime ethers

NHOBnN * TR

« Waldermann, H. [217]
¢ 7 ex; 50-95%

« traceless linker based
on acyl hydrazines

NBoc

[diamine]{
NHBoc
MeO_*
NO,

o}

e Sun, C.-M. [103]

* 3 ex; ca. 84%

« from soluble polymer-
bound 4-fluoro-3-nitro
benzoic acid

= /N /I
) NS
VA F N
MeO S
» Schotten, T. [17]
* 6 ex; 54-93%
« liquid-phase Suzuki coupling

S:';\>\/Nu

* Woski, A. [41]
« displacement of Cl in resin-
bound chloromethylthiazole

o}

- X\
HoN [ “x
N

» Du Pont [54]

o 7 ex; 0-95%
« Stille coupling with
resin-bound aryl stannanes

* 100 members
 derivatization of Boc-
protected trifluoromethyl

ketones attached to
resin via semicarba-
zone linkage

o}

OH | !
,;)\/\ .

» Pharmacopeia [39]

e 10 ex; ca. 70%

« addition of allylindium or
allylboronate to resin-
bound aldehyde

» Schering AG [111]

o 7 ex; 28-59%

* Suzuki coupling of resin-
bound 4-bromobenzo-
phenone dithioketal

* 9 ex; 90->95%

» Curtius rearrangement and
trapping intermediate isocyanate
with Wang resin, then hydrolysis

(924 0
w\ NJI\/H\/ Rn
H m
HO

 Poirier, D. [226]

* 2 ex; 20-30%

 from resin-bound 16-
B-(azidopropyl)estradiol;
X =H, COR

* 4 ex; 55-64%
* C-N cross-coupling
X=CH,N

ROH

» Hanessian, S. [94]
* 3 ex; 94-98%

» from 2-pyridylthio-
carbonate resin, ROH,
AgOTHf, then TFA.
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Table 6. (Continued)
R0 _OR® -
0 0 'R .~ R (MeO)zB—O
R°0 ~OR! . N N \ l/ .
OR? X“R ¥ N~-N  R2 R? HO—Ar
¢ Kunz, H. [115] « Abell, C. [224] o Hilbert, M. [177] » Carboni, B. [38] « Carboni, B. [38]

¢ 14 ex; 6-69%
 from resin-bound
orthogonal protected
galactose

0
|

N COOH
|
0

Chandrasekhar, S. [42]

* 6 ex; 58-72%

» reaction of resin-bound
amino acids with anhydrides

@[NH-CO-X-R
* OMe

« Langlois, M. [58]
+ 11 ex; 53-90%

o use of traceless
silicone linker; BOC
deprotection with
B-catecholborane

NReR*
NN

I .
R‘R"’NJ\ANHZ

« Bradley, M. [85]

e ca, 17 ex; 11-52%

« attachment of 4,6-dichloro-
2-thiomethylpyrimidine to
Rink resin and sequential
amination

/—COOCH
Rz)LN
o)
N-R
H

« CombiChem [48]

» 46 ex; 13-73%

« derived from iminodiacetic
acid; use of soluble polymer

MeO,C

e Janda, K. D. [204]
15 ex; 69-99%
eStille coupling on
soluble polymer

* 10 ex; 58-96%

» esters and amides
from novel safety-catch
linker involving formation
of N-arylindoles on resin;
X =0OR, NRR

e Waldmann, H. [156]
» 31 ex; 10-65 ex
o derivatives of (-)-

indotactam V; THP linker

L

=

acid; n=0, 1

HO.

_NH O

o Zeneca [10]
e ca. 30 ex; 43-100%

« attachment of dipeptide

o Abell, C., W. [182]
¢ 12 ex; 62-92%
 derived from p-(-)-quinic

* 8 ex; 50-100%
« functionalization of
3,6-dichloropyridazines

Ry

» PE Biosystems [45]
* 5 members

¢ C-C bond formation via

Mitsunobu reaction of

resin-bound alcohols and

* 6 ex; 54-67%

« functionaiization of resin-
bound boronic acids, then
transesterification

o Taddei, M. [152]
o 15 ex; 58-87%

« activation of carboxylic

acid via resin-bound
2,4-dichlorotriazine

active methylene compounds

¢ Eliman, J. A. [65]
e 13 ex; 18-47%
« Side chains introduced
via Suzuki and Michael

reactions

e 3 ex; 63-74%

» oxidative cleavage of
resin-bound aryl boronic
acids

» Ellman, J. A. [138]

* 8 ex; 40-100%
 acylthydrazone linkage
strategy; Z = CO, SOy,
Aa; Y =0, S, NH, NR

» Ellman, J. A. [65]

o 13 ex; 18-47%

» Side chains introduced
via Suzuki and Michael

reactions

o)

[

acid (R = Fmoc) to sasrin-

ONHy, deprotection and

N-derivatization; R = RCO,

RCO,, RCH,

o |bis Ther. [251]
« part of a 17,000 member
library

2 e
2
RHN O NHR Ho)j\(N\H NHR

» Boger, D. L. [20]

e ca. 15 ex; 75-95%

* Coupling using 10%
Pd/C, EtzN, DMF, 100 °C,
16h

1

R
2 ., 2
Re g "o .
R ’ R?
o |bis Ther. [251]
« part of a 17,000 member
library library

e Ibis Ther. [251]
« part of a 17,000 member

R1

« Biochem. Pharm. {234]

» 576 members

» Pre-activation of symmetric
dicarboxylic acids with BOP,
then additon to resin-bound
amino acid

S G L
2
R N O/\/N\/\O R \N/U\O/%\OH

* |

o |bis Ther. [251]
o part of a 17,000 member
library
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(b) Solution phase

O

OH Y

N
HOH,C” N )

HO OH

P 1
O‘N R
R?
.0 Rre
Rl [
R2
R3
 Eliseev, A. V. [161] * R. W. Johnson {35]
* 220 members * 300 members
* pair-wise condensation of « aminolysis of dihydro-
ArCHO with 2,4-diaminoxyaryl coumarins
X
R™ "SCHj Ar-OTf (ONf)
» Vulfson, E. N. [120] * Zhy, J. [23]

* 11 ex; high purity

* 20 ex; 65-100%

* Fleet, G. W. J. [142]

* 3 ex; ca. 35-50%

* R. W. Johnson [35]
¢ 5ex; 51-84%

e Cadus [154]
¢ 3000 member library

» aminolysis of dihydrocoumarin,
then borane reduction

e thiophene template derived
from three-component
condensation; R® = Me or

CH,OMe
RZ
Nep?
g NR
HO Q H
HO—- NH
HaN i
HngH/NHZ

 Berrisford, D. J. [167]
¢ 15 ex; 26-60%

« from carboxylic acids, « Perfluoroalkanesuffonyl » derived from amino lactone « from neamine
methyl chlorothiolformate transfer with polymer
and catalytic DMAP supported base
a Asterisk (*) indicates point of attachment to the resin.
Table 7. Acyclic Synthesis: (a) Solid Phase, (b) Solution Phase
(a) Solid phase
o} CONH.
T " i o w
. Ar; a N *
. Ar\Hn/\/\/N\/CONHZ N Ar/\,)LR HN" R

» O’'Donnell, M. J. [168,169]

* 14 ex; 51-99%

« reaction of resin-bound

Schiff base with organo
boranes

“HN._.R

s Kobayashi, S. [6]

s 16 ex; 41-93%

» reductive alkylation of
BOBA resin then
'acylation

« Ganesan, A. [249]

* 5 ex; 32-94%

« intermolecular alkyl
radical conjugate
addition of resin-bound
acrylate

« Hoffmann-La Roche [236]
e 2 ex; 84-87%

* Pd-catalyzed three-
component coupling

o P&G Pharm. [238]

* 8 ex; 38-74%

» use of a novel traceless
linker: acyl isothiocyanate

¢ Hoffmann-La Roche [236]

e 13 ex; 70-95%
» Pd-catalyzed three-
component coupling

=

B!
*NH

O
R2

« Nielsen, J. [105]

» 18 members

* microwave assisted
Ugi four-component

resin condensation
o O
N o}
HO XR! .
)j/“ N
R2 YR
« Monsanto [91] « RPR [196]

* 96 members
« from resin-bound
malonic acid

® 48 ex; 62->95%
» Horner-Emmons olefination
with resin-bound phosphonate

esters

¢ Ganesan, A. [131]
* 26 ex; 0-49%

» sequential Baylis-
Hillman and Heck

reactions of resin-bound

acrylic acids, then
decarboxylation

o Katritzky, A. R. [117]

* 5 ex; good yields
o from polymer-bound
benzotriazole

o R

PEG—O/U\)\R‘

« Blettner, C. G. [18]

¢ 14 ex; 88-98%

« liquid-phase Horner-
Emmons olefination with

» Hiemstra, H. {155]

e ca. 40 members

» three-component con-
densation of resin-bound
carbamate, RCHO and

allylsilanes
O
5
R\l?l N ”)ﬁfN\Rs
R* o

* Du Pont [92]
» 10 ex; 45-100%
1H- * phoxime resin

OH R?

H |
TS
o R! o
* CombiChem [248]

* 92 members
o THP linker

polymer-bound ketophos-
phonate and RCHO, then

Heck reaction with R%-}
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Table 7. (Continued)
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0
., N
LT Hoo
F N

H

/\ N R
NH, , OR? OR? OR® OR® | 7] & R!
R' R H =
0. N NPht NROR?
o) o) HNRL A o HO ¢ v :
b L Ve R o R i g A
* R 0 o N=N
« Goodman, M. [57] « Heinonen, P. [98] o Merck [43] » Tripos [56] o Tripos [56]
o 1 ex; 45% * 96 member library e 48 ex; 11-77% * >150 members * >100 members
[4+2] cyclocondensation of  coupling of o, o-disubstituted » synthesis carried out * Rtags * Rtags
resin-bound imine with B-alanine units to resin- on multivarient soluble
Danishefsky diene, then bound tetrahydroisoquinoline support
intracyclative cleavage
(b) Solution phase
A
R'—; R’
e JH(H
Y N “OH Q 0 0 0
0 RHNOC—, ~ RHNOC—
7 N = Z N” “CONHR N > & N""CONHR
L RHNOC PN N RHNOC T 1w L
CONHR CONHR
oley, S. V. [37] * Boger, D. L. [21] ¢ Boger, D. L. [21]
* 27 ex; ca. 50% « 64,980 members * 64,980 members
« polymer-supported reagents « from N-Boc iminodiacetic « from N-Boc iminodiacetic
and scavenger resins acid anhydride acid anhydride
4R R 0O R
) OMe RAN EWG R?
YR R'R2N N’ B
R® O RS O H R X
* Argonaut [107] » Schowalter, H. D. H. [199] » Chiron [121] * Glaxo Wellcome [173]
* 5 ex; 0-60% * 12 ex; 20-77% * 10 ex; 61-85% o ca. 21 ex; 20-50%
« ester enolate Claisen » amines from Mannich « ring opening of 3,3- « resin-bound from
rearrangement using adducts of polymer- di-OMe-N-sulfonyl and benzotriazoles, aldehydes,
polymer-supported silyl supported benzotriazole carbamoyl azetidin-2- and amines and alcohols;
triflate ones, then ketal hydrolysis X = OR%; NR°R*
a Asterisk (*) indicates point of attachment to the resin.
Table 8. Monocyclic Synthesis: (a) Solid Phase, (b) Solution Phase
(a) Solid phase
o}
R!
* OMe
N _ 2
HN /4',“ ] R N._O RIREN
N R N/ = *
O “R® NH R3 HO" NH
R? * o]
o [bis [132] * Merck [146] o Kurth, M. J. [176] « R. W. Johnson [40] e Hoffman-La Roche [191]
e 4dex; 61-90% * 7 ex; 75-99% * 18 ex; 20-39% o 5ex; 60-72% ¢ 4 ex; 53-78%
» ring formation via » base-catalyzed conden- « dipolar cycloaddition on « Dieckmann « aminolysis of resin-
intramolecular Mitsunobu sation-cyclization of resin; intracyclative condensation bound epoxide; plus
reaction of resin-bound resin-bound esters and cleavage; X=0, S regioisomer
phenylalaninol amidoximes
2 o R
a! RE7 - C0H R3 o ©
2 NS, ! 1 N ‘ * NR'
R ol S N7 R NN NN HO™ 1\
* Ry = \[( 1 [P *
0o  TR® X R 3 R2

o Tory, T. [237]

e 12 ex; 47-93%

¢ BuzSnH-mediated
intramolecular cyclization
of resin-bound B-bromo-
ethylacetals, then Jones
oxidation

» Affymax [222]

* 7 ex; ca. 30%

» Knoevenagel-Hantzsch
reaction sequence

» Affymax [222]

* 4 ex; ca. 30%

» Knoevenagel-Hantzsch
reaction sequence

 Houghten, R. A. [164]

» 4 libraries of 118,400
members each

¢ CXImy-mediated ring
formation from resin-bound
polyamine; X=0, S

* Monsanto [157]

* 11 ex; 43-80%

 from resin-bound
malonic acid and amino
acid alcohols
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R
R! o | 0 1
N9 R! R)——</O 0
3
° N\E)*J\NHFP L) P Wi HN\“/N\_)J\OH
H R H *

R g~ \N 0 o R

» Affymax [160] * Knochel, P. [193] « Organon [12] o Petillo, P. A. [58]

o 7 ex; 17-65%

« intramolecular cyclization

of cysteine SH and 2-bromoamide
carboxylic acids, then post
cleavage amidation

® 20 ex; 55-95%

» formation of resin-bound
Grignard, addition of ArCHO,
then intracyclative cleavage

® 2 ex; 24-57%

» intracyclative cleavage
of resin-bound 1,2-
dicarboxylic acids

* 7 ex; good purity

» direct cyclization of
Fmoc-dipeptides via
treatment with EtsN/TMSCI
and heating

R3
N N—NH y N7
N a R H-g
HL_g\/N 1 A c AN R NQ/R
S R o HO
R? 2q g3 F R

» Argonaut [106]

s 6 ex; 48-98%

* SOCly-mediated
cyclative cleavage of
resin-bound sulfonyl-
hydrazones

¢ Kobayashi, S. [125]

¢ 16 ex; 38-88%

* S¢(OTf)3-mediated

Mannich type reaction of resin-
bound acylhydrazones and
ketene silyl acetals, then NaOMe-
mediated cyclative cleavage

>

* Wyeth-Ayerst [50]

¢ 10 ex; 19-62%

« from resin-bound
hydroxyacetophenones

» Chiron [207]

* 12 ex; 78-89%

» Staudinger reaction using
resin-bound arylimines

« Hiemstra, H. [231]
* 6 ex; 36-98%

* N-acyliminium ion
cyclization

R1

Qo
NH, N R N’\<N o
Z RO OR R * SN2 N X
g Sy . | NH N g Hozc(\%,U\N\/:(-
S o N 3
X H R X HO NHOBn

o Eli Lilly [144]

* 12 ex; 55-86%

« reaction of 2-fluoro-
benzonitriles with oxime resin
cleavage followed by

e Merrer, Y. L. [76]

* 7 ex; 53-90%

« alkylation of Rink resin
with L-iditol bis-epoxide
then OH-derivatization;

» Wang, G. [246]

e 8 ex; 52-96%

* Yb (OTY), -catalyzed
aza Diels-Alder reaction
with resin-bound imines;

« Katritzky, A. R. [118]

* 13 ex; >95%

o reaction of resin-bound
acylhydrazine with
amidines, then optionally

o Kobe Pharm. [159]

* 3 ex; 64-77%

* Et3B-mediated
intramolecular radical
cyclization of oxime ethers

intracyclative cleavage R=H, COR, CONHR, cleavage using ACE N-alkylation
COCH,NHFmoc chloride; X = H, CO,Et,
R? s B o 0 .

. ‘ " q HO
RN H: _2‘ @ HN  N— HN  N—

] . . N 2
R’NJ\N 0 R'N N O —< R2 R? R 2 W/R

1 H t H R' R' 0-N

o Tularik [72]

* 8 ex; 66-97%

o reaction of resin-bound
S-methy! isothioureas
with Fmoc-amino acids

» Tularik [72]

* 5 ex; 46-91%

» reaction of resin-bound
S-methyl isothioureas
with oxazolones

¢ Houghten, R. A. [162]

¢ 12 ex; >80%

o reduction of 1,2-diketo-
piperazines derived from
reduced N-acylated amino acids

* Houghten, R. A. [162]

¢ 12 ex; >80%

» from resin-bound reduced
N-acylated amino acids

« Novo Nordisk [198]

*16 ex; 24-40%

e cyclization of resin-bound
acylated N-hydroxyamidines

—R
3 .R?
;(HR R 0 @] O HN»
4 NHCOR® [ > N ~ R R
g 4 Q ) l‘,/ ri-L N \ °
* [ e ey, N
R1/<N3\’/N X-R /NK o , Sy o Rs/‘\f(N o
R? R "R? R o]
e Trega [97] ¢ Amgen [183] « Perrotta, E. [116] « RPR [109] « RPR [109]

o size & yields not given

« conversion of resin-bound
nitriles to amide oximes and

cyclization to oxadiazoles

« ca. 15 ex; 15-60%

« ring closing metathesis

using N-protected amino acid

anhydrides; X = CO, SO,

1 0. 2
R \« W/R
N-N

« Novartis [26]

* 16 ex; 75-98%
 dehydration of 1,2-
diacylhydrazines

using polymer-supported
Burgess reagent

o

R L RZ

» Monsanto [90]
o7 ex; 0-21%

» Knoevenagel condensation
of resin-bound malonic ester,
condensation with amidines

then decarboxylation

¢ ca. 5 ex; high yield
* amino-zinc-enolate
cyclization then
derivatization

« Monsanto [90}]

¢ 10 ex; 49-99%

« Knoevenagel condensation
of resin-bound malonic ester,
condensation with amidines
then oxidation with CAN

* 6 ex; 31-100%
» Ugi three-component

condensation with ethyl-

glyoxalate

 Blechert, S. [181]

e 4 ex; >70%

« ring formation via olefin
metathesis

e 3 ex; 70-100%

« Ugi three-component
condensation with ethyl-
glyoxalate

o}

Hzf\!
S,
iy
R
« Chiron [78]
s 4 ex; 54-97%
o Hantzch thiazole synthesis;

on-resin conversion of ArCN
to thioamides
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*
*

2

ol f 1

N R = : [
) . N-R® } A 4
R2 N B N 'R

)

Il

2

R N0
!
R? H
*Brown, R.C. D.[32]  Jung, G. [83] e Jung, G. [83] » Jung, G. [83]

s ca. 7 ex; 16-95%
¢ imino-Sakurai and
Pd-catalyzed intra-
cyclative cleavage

e 13 ex; 41-61%
« from alkylidene-and
arylidene-B-oxo esters

* 9 ex; 72-85%

» condensation of resin-
bound enones and
1-(methoxycarbonylmethyl)

e 6 ex; 71-75%

» condensation of resin-
bound enones with
1-(methoxycarbonylmethyl)

O
M e
M o, R

» Blechert, S. [200]

¢ 5 ex; 26-55%

« yne-ene cross metathesis and
Diels-Alder cycloaddition then
intracyclative cleavage

Nu

»

OR;,

RZ

o Kurth, M. J. [49]

* 8 ex; 30-38%

 derived from resin-bound
allyl sulfones

» Chiron [79]

¢ g ex; ca. 50%

o from resin-bound
isonicotinic acid

(b) Solution phase

» Ganesan, A. [130]

¢ 10 ex; 25-50%

» reaction of polymer-
supported TosMIC with
ArCHO

» Argonaut [61]

* 20 ex; 50-69%

s CDI-mediated formation
and cyclodehydration of
(-acylbenzamidoximes

pyridinium bromide

R!

If“z
o R?

O

e Toru, T. [237]

* 6 ex; 47-93%

« radical cyclization of
resin-bound B-bromo-
ethylacetals

» Chiron [78]

¢ 8 ex; 58-95%

» Hantzch thiazole synthesis;
on-resin conversion of ArCN
to thioamides

¢ Ganesan, A. [130]

* 13 ex; 54-85%

« condensation of TosMIC
and ArCHO catalyzed by
ion exchange resin

2
R‘R

®

RG
Pash
RS o R*
R4

sley, S. V. [88]
¢ 27 ex; 30-95%

« from acetophenones; use
of polymer supported reagents

(o}

o

N
R‘/,\

COOH

« Taddei, M. [70]

e ca. 10 ex; good yields

» Gabriel-Cromwell synthesis
from resin-bound amino acid

(o]
H
RN
RZ/\ / \N
[0} N'
g
¢ SKB [31]

* 960 members
« from 5 unique pyrazo-
linone carboxylic acids

sley, S. V. [87]

* 4 ex; 47-95%

» use of scavenger reagent
to mediate cyclization of
a-bromoketones and thiourea

pyridinium bromide

» Taddei, M. [70]

* ca. 20 ex; good yields
 Gabriel-Cromwell synthesis

from resin-bound o-bromoacrylamide

o R
N 1
H N R
-R? /Q H
NR RN R
o} RZ O
* RepliGen [245] +RPR [110]

¢ 13 ex; 85-100%
« Ugi three-component
condensation

elLey, S.V. [87]
e 4 ex; 73-95%

+ 10,members

+ Ugi four-component con-
densation with Boc-amino
acid aldehydes, then
TFA-mediated cyclization

» use of scavenger reagent
to mediate cyclization of
o-bromoketones and thiourea

a Asterisk (*) indicates point of attachment to the resin.
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Table 9. Bicyclic and Spirocyclic Synthesis: (a) Solid Phase, (b) Solution Phase

(a) Solid phase

2
NP

» Brase, S. [27]

o 5 ex; 47-95%

» Pd-catalyzed alkynylation of
triazene bound o-halo arenes,
HX-mediated cleavage and
cyclization

COOH
NHR

» Burkett, B. A. [34]

s 4 ex; 72-81%

» Diels-Alder reaction
between resin-bound
dihydroalanine and cyclo-
pentadiene

NH,
N/I N
LR

« Chauhan, P. M. S. [214]

* 2 ex; 76-80%

« from resin-bound 2-
(alkylthio)-4-aminopyrimidine-
5-carbonitrile; resin cleavage
with Ni/Hp; X=0, 8

Br : NH

N/

AN

N

Cl

» Abell, C. [53]

e 1ex; 69%

o reaction of 3-bromoaniline
and resin-bound 4-chloro-
quinazolone-2-carboxylic
acid, then cleavage

via decarboxylation

o Chmielewski, M. [73, 74]
* 2 ex; 26-30%

« intracyclative cationic
cleavage

2
H = R 2
N > LENY
R *\n/\N« \ /
A ORBJQN X

« Affymax [228] * R. W. Johnson [219]

¢ 12 ex; 43-80% o 5 ex; 32-55% * 5 ex; 32-55%
« nitroarylation of resin- « intramolecular Diels-

bound glycine, nitro Alder reaction; X = O, 2H

reduction and cyclization
with R*CHO

[o]
*
o]
Ar

» Novo Nordisk [75]

* 8 ex; 66-81%

o resin-bound benzamide
ortho-lithiation then reaction
with ArCHO and intracyclative
cleavage

(o]
Ph

NZ I N~
KL

o Chauhan, P. M. S. [214]

* 2 ex; ca. 75%

« from resin-bound 2-(alkytthio)-
4-aminopyrimidine-5-carboxamide;
resin cleavage with Ni/H,; X =0, 8

HN l Cl

NS

o Abell, C. [53]

* 1 ex; 64%

» condensation of resin-
bound ethyl oxalate and
2-amino benzamide, then

cleavage via decarboxylation

[0} o Nu
L
N~ "0
ﬁ1

o Novo Nordisk [244]

* 6 ex; 26-43%

« from resin-bound 4-fluoro-
3-nitrobenzoic acid

1
B H
= X
H

N
HaCO . N
g
o
* Sun, C.-M. [240]
* 12 ex; 72-99%
« liquid-phase synthesis from

immobilized 4-fluoro-3-
nitrobenzoic acid

. R 0
(o]
X
R
R [¢)

¢ Du Pont [208]

e 8 ex; 18-99%

» Diels-Alder reaction of
resin-bound silyloxydienes
derived from polymer-
supported silyl triflate and
unsaturated ketone; X = O, NPh

0 H 0
N
v
N

2
od R

* R. W. Johnson [140]

* 35 ex; 46-98%

» from 4-fluoro-3-nitro-
benzoic acid and B-amino
esters

o

S
* 1
H,N }NHR
\

R2

* Affymax [201]

s ca. 50 ex; ca. 50%

» SyAr addition of cysteine to
resin-bound 4-fluoro-3-
nitrobenzoic acid

COOH R'  COOH H

T,

* R. W. Johnson {219] e Sun, C.-M. [174]

* 5 ex; 75-96%

» intramolecular Diels- « from resin-bound
Alder reaction; X =0, 2H  4-fluoro-3-nitrobenzoic

acid

« SIDDCO [210]

e 96 ex; ca. 77%

» from resin-bound
4-fluoro-3-nitrobenzoic

acid
OH o
R
N-Ph
R
R (e}

« Du Pont [208]

* 4 ex; 31-97%

 Diels-Alder reactions of

resin-bound silyloxydienes

derived from polymer-supported

silyl triflate and unsaturated aldehyde

» Spyder [136]

* 380 members
 centrifuge based
liquid removal

{10

Ar

¢ Knochel, P. [193]

« 10 ex; 69-98%

« formation of resin-bound
Grignard, addition of ArCHO,
then intracyclative cleavage
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¢ Parke-Davis [25]
s ca. 8 ex; 34-73%
o ring formation via intra-
molecular Heck reaction

HaCO, ST
N,
o) < j R

s Sun, C.-M. [241]

o 12 ex; 64-92%

« from resin-bound 4-
fluoro-3-nitrobenzoic acid;
soluble support

1
R2 O R
COXR®
o N O
HoN

» Affymax [179]

* 14 ex; 83-98%

« intramolecular Diels-Alder
reaction of resin-bound
furans; X = O, NH

o] R,
s Y N HN-R?
R*=r P
N e}
0
Ry
* RPR [109]

* 5 ex; 39-82%
» Ugi three-component
condensation with ethyl-

glyoxalate

o R

E

7 "512
N
(o}
o NH,

o}

« Affymax [178]

* 6 ex; 88-95%

» tandem four-component
condensation/intramolecular
Diels-Alder reaction

* Organon [12]

o 7 ex; 20-80%

« intracyclative cleavage
of resin-bound 1,2-
dicarboxylic acids

Rl NCOR?

¢ SIBIA [46]

e 13 ex; 0-83%

¢ Diels-Alder reaction of
resin-bound enol ether derived
from N-acyl-2-substituted-
dihydro-4-pyridone

« SIDDCO [211]

* 10 ex; 30-74%

o reductive amination of
resin-bound aldehyde, then
N-arylation with o-fluoronitroaryls,
NO, reduction, acylation, intra-
cyclative cleavage

o. K COxMe

0]

» Spitzner, D. [86)

e 1ex;79%

 resin-bound anionically-
induced domino reactions;
three derivatives

also prepared

AcHN

* Novo Nordisk [216]

* 1 ex; 66%

* SpAr displacement of 4-
fluoro-3-nitrobenzoic acid
amide with arylacetonitrile,
then nitro reduction and
cyclization

» COR Ther. [108]

* 9 ex; 85-90%

« TMOF/TFA-mediated
cyclization of resin-
bound anilino carbamates

1 NCOR2?

R
. %Ncoza
0

NCO,Et

« SIBIA [46]

* 2 ex; 41-83%

» Diels-Alder reaction of resin-
bound enol ether derived from
N-acyl-2-substituted-dihydro-4-
pyridine

« Grigg, R. [82]

o 5 ex; 20-40%

* Pd-catalyzed intermolecular
cascade reaction with aryl-
iodides, CO, and resin-bound
hydroxylamine

* RPR [109]

e 5 ex; 20-100%

» Ugi three-component
condensation with ethyi-
glyoxalate

R1

¢ Houghten, R. A. [163]

s ca. 4560 members

o from resin-bound cysteine
and 2-fluoro-5-nitrobenzene
carboxylic acid

* Axys Pharm. [24]

* 10 ex; 24-82%

o [4+2] cycloaddition of
resin-bound diene and
urazine, then Mitsunobu
to introduce R*

R'. NCOR?

é NO,

Ph
* SIBIA [46]
e 2ex; 15%
« Diels-Alder reaction of resin-
bound enol ether derived from
N-acyl-2-substituted-dihydro-4-
pyridine

o Ganesan, A. [235]

¢ ca. 17 ex; 39-88%

» Pictet-Spengler condensation

of N-acyliminium species

prepared from resin-bound
tryptophan, Fmoc-amino acid
chiorides and RCHO, then Fmoc
removal and intracyclative cleavage

* Amgen [122]

« size and yield not given
» novel condensation
from o-trifluorophenyl
hydrazones

« Blechert, S. [200]

* 9 ex; 14-28%

* yne-ene cross metathesis and
Diels-Alder cycloaddition then
intracyclative cleavage
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» Mata, E. G [62]

® 4 ex; 45-55%

» thermal rearrangement of
penicillin sulfoxide

R! -
o R?

* Molecumetics [67]
e 11 ex; 22-71%

o acyliminium cycliza-
tion

RS

Os _NH
R® R' 0O
N\/}rlll\/u\

o}

* Spyder [137]

« 30,816 members

» from resin-bound imine an
homophthalic anhydride

2
0 R g
R4 A .
. | | N
NH, R* N
R1

» Nicolaou, K. C. [166]
e ca. 15 ex; 21-98%

d » Se-mediated cyclization
using polymer-supported

* Affymax [16]

» 4800 members

» sequentiai Hantzch
condensation and intra-

reagent cyclative cleavage

HO

N CO,H
:11—<\ I

ZZ

» Novo Nordisk [216]

* 3 ex; 39-74%

* ShAr displacement of resin-bound
4-fluoro-3-nitrobenzoic acid with
1,3-dicarbonyls or acetonitriles, then
nitro reduction and cyclization

(b) Solution phase
Q H
N-R?
N NOR!

o v
O X

* RepliGen [245]

* 13 ex; 56-91%

* Ugi three-component
condensation

N.
R2 0

0]

* RepliGen [245]

* 13 ex; 75-100%

» Ugi three-component
condensation

* Grigg, R. [82]

* 10 ex; 21-89%

¢ Pd-catalyzed intramolecular
cascade reaction with

o-iodo aryl ethers, CO, and
protected hydroxylamines

a Asterisk (*) indicates point of attachment to the resin.

Table 10. Polycyclic and Macrocyclic Synthesis: (a) Solid Phase, (b) Solution Phase
(a) Solid phase

R . 0o R?

[0} j\, FEi R’ N .
HoN NH _H NH, R
A \g/\ HN__o HN - N

H 30 J o

N Ré S NO,
O
o
* SKB [133] * Burgess K. [69] e Amgen [171] * R. W. Johnson [219]

® 2 ex; 36-37%

« intramolecular Diels-Alder
reaction; X = CH, O;
Y=0,2H

* 5 ex; 38-53%

 reductive alkylation of
resin-bound B-alanine with
2-fluoro-5-nitrobenzaldehyde
and 2-hydroxybenzaldehyde,
then intramolecular cyclization,
cleavage, and N-alkylation

* 11 ex; 68-99%

« macrocyclization of lysine
€-NH, and succinamide
carboxylic acid

o 13 ex; 15-44%

« intramolecular cyclization
of cysteine and benzyl-
bromide
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R1
H':')\ o i
92\/&0 0 RR 0 Y
9 SR & ot

R

"

gB®
o |bis Ther. [112]

* 26 ex; good purity

« intramolecular ether
formation via nucleophilic
aromatic substitution;

X = NO,, NHR?

_
R HN\:&O

* Amgen [80]

* 18 ex; 55-78%

* SpAr intramolecular
cyclization of 4-OH-Pro

(b) Solution phase

* RepliGen [245]

* 13 ex; 38-64%

» Ugi three-component
condensation

4
RN ;

» Affymax [180]
* 12 ex; 14-34%

« intramolecular azomethine

ylide cycloaddition and
intracyclative cleavage

« Amgen [123]
* 20 ex; 52-68%
» SpAr reaction

* Amgen [170, 172]

* 15 ex; 55-87%

* S\Ar cyclization from resin-
bound phenols and
2-fluoro-5-nitrobenzoic acid

o)
o)
YN
HN. R?
1 * N02
R'HN fe)
o)

* Amgen [124]
* 30 members
* ShAr cyclization

CONHR*
N-R'

G o

* RepliGen [245]

s 13 ex; 19-42%

» Ugi three-component
condensation

a Asterisk (*) indicates point of attachment to the resin.
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