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ReViews

Comprehensive Survey of Combinatorial Library Synthesis: 1999

Roland E. Dolle*

Department of Chemistry, Pharmacopeia, Inc., P.O. Box 5350, Princeton, New Jersey 08543-5350

ReceiVed June 30, 2000

Continuing with this annual series of comprehensive
surveys of combinatorial libraries,1 the present review
captures small molecule libraries for pharmaceutical applica-
tions reported in the literature during the year 1999. The total
number of libraries published in 1999 was 292. There were
85 citations for libraries describing biologically active agents
and 207 citations for library constructs without disclosed
biological activity.2-252 Overall, these numbers are quite
similar to those reported in last year’s review.1a Last year,
the first example of an efficacious and orally active
compound obtained directly from an optimization library was
reported.253 In addition to new examples of orally bioavail-
able agents coming from chemical libraries,8,229,252,101this year
marks another milestone: a 500-member optimization library
played a defining role in the identification of a clinical
candidate.66,153 The effort was reported by Agouron Phar-
maceuticals in their structure-based rhinoviral 3C-protease
inhibitor program. Achievements such as these are worth
noting as large capital investments have been made in
combinatorial chemical technologies.254 Today combinatorial
synthesis pervades many aspects of drug discovery from lead
finding and target validation, lead optimization, to enhancing
corporate compound collections.

Including the libraries compiled herein, a total of 975
libraries have been abstracted along with their generic
structures in this comprehensive review series,1 beginning
in 1992 when the first publications of libraries began to
appear in the literature. An analysis of the data collected in
the reviews reveals some interesting statistics and trends in

combinatorial chemical research (Figures 1-5). Figure 1A
graphically illustrates the number of libraries published
during the years 1992-1999 as divided into two broad
classifications: (1) chemical libraries for which their syn-
thesis and biological assay data is reported (disclosed
biological activity), and (2) chemical libraries for which only
their synthesis was reported and no disclosure of biological
activity (undisclosed biological activity). The number of
reports of biologically active libraries grew at a fairly steady
pace. The largest single jump (10-fold) occurred in 1995,
with a steep rise occurring in 1998-1999. The 1998 library
number of 74 is nearly equivalent to the combined total of
the preceding 6 years. The number of biologically active
libraries for 1992 through 1999 was 240. In contrast, the
number of reports of library synthesis without disclosed
biological activity rose at a much more dramatic pace as the
nascent field began to take root. In 1992-1994, only 15
libraries of this type in total had been reported, comparable
in number to the 12 biologically active libraries reported for
the same period. Library citations (without biological data)
increased by a factor of 3× in 1995 to 43 libraries. In 1996
library publications of this genre more than doubled (2.5×),
held steady for 1997, and then doubled again in 1998 to 247
libraries. Libraries with undisclosed biological activity fell
back slightly to 207 libraries in 1999. The total number of
libraries in this classification is 735, some 70% more than
reports of biologically active libraries. This gap is not too
surprising since researchers are anxious to demonstrate new
chemical methodologies, while safeguarding the structures
of active library members. Figure 1B shows the cumulative* E-mail: roland@pharmacop.com.
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total of both library classifications, which on balance has
increased approximately 1.5× each year.

The early appeal of combinatorial chemistry was creating
large discovery-type libraries through synthesis on solid
support. In addition to its perceived synthetic advantages,
solid-phase synthesis was the overwhelming choice for
library construction in 1992-1995 (Figure 2). Some 80%
of the libraries produced in this time period were generated
on solid support. Solution-phase synthesis surged to 50% of

the total reports in 1996. This was led by advances in the
development of new solid-phase reagents, scavenger resins,
novel fluorous-based separations, and automated liquid-
liquid extractions. Publications of solution-phase library

Figure 1. Libraries by major class.

Figure 2. Solid- versus solution-phase for all library constructs
(1992-1999).

Figure 3. Library contributions by affiliation (1992-1999).

Figure 4. Libraries by subclass (1992-1999).

Figure 5. Discovery, targeted, and optimization libraries (biologi-
cally active libraries only).
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synthesis remained steady at ca. 33% in 1997 and 1998, but
receded to its 1992-1995 levels (20%) this immediate past
year. The data suggest that solid-phase synthesis continues
to hold a dominant position in combinatorial synthesis as
more and more chemistries are redeveloped on this medium.

Figure 3 indicates the origin of library contributions over
the last 8 years, i.e., from the laboratories of academia or
industry. In the combined years 1992-1997, two-thirds of
the contributions were from industrial laboratories, with this
number remaining relatively constant in 1998. This past year
library affiliations moved to an industry:academia ratio of
1:1. Overall, pharmaceutical and biotechnology industries
appear to be the prevailing players in the game of small
molecule combinatorics, motivated by the goal of increasing
drug discovery speed and reducing costs. The majority of
academic publications showcased new synthetic methodolo-
gies.

Figure 4 reveals the breakdown of libraries by subclass.
Biologically active libraries are designated into one of five
subclasses. These include proteolytic enzymes (27%), non-
proteolytic enzymes (22%), GPCRs (20%), non-GPCRs
(17%), and cytotoxic and antiinfective agents (14%). Within
the proteolytic enzyme subclass, serine proteases, namely
the trypsin superfamily, were the most screened molecular
targets. For GPCRs, opioid receptors appear to be the
perennial favorite, not so much as a serious molecular target,
but a convenient demonstration of library utility. Libraries
without reported screening data also fall into one of five

categories: scaffold derivatizations (27%), acyclic synthesis
(19%), monocyclic synthesis (28%), bicyclic and spirocyclic
synthesis (22%), and polycyclic and macrocyclic synthesis
(4%). A widely used scaffold or template for derivatization
is the polyhalogenated heterocycles, e.g., cyanuric chloride
and trichoropyrimidine (Figure 6).270-278 Substituted fluo-
ronitroaromatics have been especially versatile reagents for
the construction of mono-, bi-, and macrocycles (Figure
7).255-269 Many of the classical routes to heterocycles have
been reported on solid phase.290

Focusing on the 240 biologically active libraries published
in 1992-1999, one can readily distinguish between discov-
ery, targeted, and optimization libraries (Figure 5). For the
purpose of this discussion, discovery libraries are defined
as typically large in size (>5000 members) having no
preconceived notions about which molecular target(s) it may
be active against. Targeted libraries are biased in their design,
defined as those libraries which contain a pharmacophore
known to interact with a specific (or family of) molecular
target. Optimization libraries are defined as those libraries
in which a lead exists and an attempt is being made to
improve its potency, selectivity, pharmacokinetic profile, etc.
Accordingly, each of the 240 libraries have been examined
and binned into one of these three categories. Between the
early years 1992-1997, discovery libraries garnered the
highest percentage of citations at 57%. This was twice the
percentage of targeted libraries and 4 times the reported
number of optimization libraries. The number of discovery

Figure 6. Libraries from polyhalogenated heteroaromatic scaffolds.
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Figure 7. Libraries from fluoronitroaromatic scaffolds.

386 Journal of Combinatorial Chemistry, 2000, Vol. 2, No. 5 Reviews



libraries has fallen rather significantly in the past two years
from its 57% high to now the lowest in the group at 21%.
In the same 2 year period, targeted libraries now top the
charts, rising from 30%f 45% f 54%. Optimization
libraries rose from 7% (1992-1997) to ca. 20% (1999), equal
to the number of discovery library disclosures. It is tempting
to speculate whether this represents atrue shift in the way
the combinatorial chemistry is being valued and applied in
drug discovery, or an artifact of industrial research released
for external consumption.2 Anecdotal evidence from discus-
sions at recent conferences and literature commentaries
suggest targeted library collections biased toward a specific
class or family of molecular targets and “lead explosion”
libraries may be preferred over large discovery-type librar-
ies.254,279,280Certainly large libraries offer unique advantages
over smaller focused collections providing they can be
designed with drug-like properties and screened efficiently
and the actives can be readily identified.281

One of the criticisms leveled against combinatorial chem-
istry and which may still slow the acceptance of the
technology is that the chemistries generally yield structures
that are too peptide-like and contain multiple amide bonds.
This is a valid concern due to the known pharmacokinetic
liabilities, poor drug-like characteristics, and difficulty in
optimizing these types of compounds. Data derived from the
biologically active libraries show that, of the libraries
reported during 1992-1997, ca. 50% were in fact peptide-
based (more than three contiguous amino acid residues).
Approximately 70% of the libraries incorporated one or more
R-amino acids, and ca. 85% of the libraries contained one
or more amide bonds (data not shown). In the combined years
1998-1999, the number of reported peptide libraries fell by
more than half to ca. 20%, most likely reflecting a bona fide
loss in interest in these types of libraries. The use ofR-amino

acids in library construction remains high at ca. 50%, as these
synthons represent an excellent source of chiral, low mo-
lecular weight diversity elements.

Figure 8. Dive’s libraries of phosphinic acids.

Figure 9. Affymax’s thiomethyldiketopiperazine libraries.

Figure 10. Hydroxyethylamine libraries for cathepsin D and
plasmepsin II inhibition.
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Finally, the notion that combinatorial synthesis acting
alonewill accelerate drug discovery research has not been
borne out by experience over this first decade. Ideology of
a single universal library as a source of leads against a
plethora of molecular targets, purported by some, is not
credible. What is evident is that combinatorial synthesis is
an important technology among a suite of technologies that
can be brought to bear on solving drug discovery problems.

Library Descriptions

Consistent with the format of previous annual reviews,1

the abstracted 1999 libraries are sorted into two major
categories, libraries with and without associated biological
activity. Biologically active libraries are further sorted into

five subclasses: proteolytic enzymes (Table 1), nonpro-
teolytic enzymes (Table 2), GPCRs (Table 3), non-GPCRs
(Table 4), and cytotoxic and antiinfective agents (Table 5).
The name of each library is given, along with its size and
affiliation (company name for libraries produced from
industry, senior author for libraries reported from academia),
as well as the structure of the most active compound from
the library. Each library listed in Tables 1-5 is given a
library number, e.g., library 2.10 refers to library entry 10
in Table 2. Libraries without accompanying biological data
are also segregated into five subclasses. Here each entry is
further subdivided as per the mode of synthesis, solid- versus
solution-phase synthesis: scaffold derivatization (Table 6a,b),
acyclic synthesis (Table 7a,b), monocyclic synthesis (Table
8a,b), bicyclic and spirocyclic synthesis (Table 9a,b), and
polycyclic and macrocyclic synthesis (Table 10a,b). The
affiliation of each library is provided, along with the number
of synthetic examples, range of reported reaction yields, and

Figure 11. Mechanism-based libraries targeted for (chymo)trypsin serine proteases.

1992-1997 1998 1999

peptide-based libraries 50% 20% 21%
libraries usingg1 amino acid 70% 55% 53%
libraries containingg1 amide bond 85% 65% 75%
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a brief description of its synthesis. As indicated previously,1a

the size of the reported library does not necessarily reflect
confirmed library size. Single synthetic transformations,
phage display, polysaccharide, and polynucleotide libraries,
and libraries for applications in material science or other
nonpharmaceutical research areas, are not included in the
tables.

Libraries Yielding Proteolytic Enzyme Inhibitors
Each of the four broad classes of proteasessmetallo-

(libraries 1.1-1.5), aspartyl- (libraries 1.6-1.8), serine-
(libraries 1.9-1.18), and cysteine proteases (libraries 1.19-
1.20)swere targeted for library synthesis (Table 1). As in
previous years, mechanism-based design strategies were
generally employed to create protease inhibitor libraries. This
approach relies on selecting a functional group or pharma-
cophore known to engage an enzyme’s active site residues
and building a library around the scaffold in an effort to
obtain potent and selective inhibitors.

In a continuation of their research on the preparation of
libraries containing the phosphinic acids, a transition-state
isostere for metallo-proteinases,282 Dive and co-workers
described the preparation of two new peptide phosphinic acid
libraries, 1.1 and 1.2 (Figure 8). Library 1.1 yielded a
selective N-domain inhibitor1 of angiotensin I converting
enzyme (ACE).64 A selective inhibitor2 of stromelysin
(matrix metallo-proteinase-9) was obtained from library
1.2.230 The structurally related tripeptide phosphinic acid
libraries 3 and 4 were first described by Dive in the
identification of potent and selective inhibitors5 and 6 of
the metallo-proteases thimet oligopeptidase and neurolysin
1.282 The ACE inhibitor 1 is structurally distinct from
inhibitors 5 and6, and its discovery is significant in that it
is the first agent to discriminate between the catalytic N-
and C-domains in this enzyme. The C-domain of ACE
catalyzes the hydrolysis of angiotensin I and angiotensin II
regulating blood pressure, while the N-domain of ACE is
thought to be responsible for the specific hydrolysis of other
physiologically important substrates, e.g., Ac-Ser-Asp-Lys-
Pro, a negative regulator of hematopoietic stem cell dif-
ferentiation and proliferation. Currently, marketed ACE
inhibitors do not discriminate between the enzyme’s two
catalytic domains, and thus the selective N-domain inhibitor
1 may prove to be a useful pharmacological tool in
understanding the role of the N-domain in vivo.

Affymax reported the synthesis of two thiol-containing
diketopiperazine libraries (libraries 1.3 and 1.4; Figure 9).221

The research group previously disclosed these thiol-contain-
ing heterocycles as possessing inhibitory action against the
matrix metalloproteinases (MMPs).283 In the earlier work,
potent collagenase inhibitors were discovered, but these
lacked selectivity (7 f 8; 9 f 10). It was the goal of the
new libraries to enhance this aspect of the series. Selectivity
was imparted to the class by incorporating nitrophenylalanine
as one of the amino acid monomers, furnishing inhibitors
11, Ki ) 47 nM (>25-fold versus gelatinase B and strome-
lysin), and12, Ki ) 21 nM (ca. 60-fold selective versus
gelatinase-B).

In a full paper, Ellman described further utility of
hydroxyethylamine libraries as inhibitors of aspartyl pro-

teases.95 A series of optimization libraries (library 1.7, Table
1) were systematically prepared, ulitmately furnishing potent
inhibitors of plasmepsin, e.g.,13, although in general, these
agents demonstrated weak selectivity against cathepsin D
(Figure 10). Throughout the work, particular attention was
paid to the physicochemical properties of the libraries and
resynthesized compounds as measured against the Lipinski
parameters. Earlier work with libraries of this class furnished
potent cathepsin D inhibitors (14 f 15).284

Libraries possessing inhibitors of trypsin-like enzymes
were reported from several groups. These includedδ-ke-
tothiazoles (library 1.10),3 arylamidines (libraries 1.11 and
1.12),22,184 benzothiophenes (library 1.13),114 and aminocy-
clohexanones (library 1.14).2 A novel series of amino acid
sulfonamides were optimized to yield an orally bioavailable
thrombin inhibitor (library 1.18).252 Two examples of mech-
anism-based inhibitor libraries of serine proteases leading
to covalent adduct formation were reported. These include
the benzisothiazolones (library 1.9),243 yielding inhibitors of
tryptase, and thiadiazolidin-3-ones (library 1.15),128 showing
a broad spectrum of affinity for serine proteases with a
(chymo)trypsin-like fold (Figure 11).

SmithKline Beecham published on the design and enzy-
mology of a novel class of 1,3-bis(acylamino)-2-butanones

Figure 12. 1,3-Bis(acylamino)-2-butanones library as cysteine
protease inhibitors.239
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as cysteine protease inhibitors.239 Their interest in this area
is a result of a discovery program aimed at identifying
inhibitors of cathepsin K.285 Cathepsin K is a cysteine
protease that degrades collagen at sites of bone remodeling,
and inhibitors thereof may represent potential antiosteoporetic
agents. In an effort to facilitate the rapid optimization of the
1,3-bis(acylamino)-2-butanone inhibitors, a solid-phase syn-
thesis for this class of compounds was developed (Figure
12). Using the acid labile BAL aldehyde linker on polysty-
rene resin, the synthesis was initiated via the reductive
amidation of amino acid esters onto linker26. Acylation of
the resulting secondary amine and hydrolysis furnished acid
28. Coupling28 to the orthogonal protected azide amine29
gave resin-bound intermediate30. Azide 29 was prepared
in solution via a four-step sequence from Boc-alanine methyl
ester. Reduction of the azido group in30, then acylation with
3-(2-pyridinyl)phenylacetic acid, and acid-mediated cleavage
furnished the library compounds. Although optically active

synthons were used in the library construction, inspection
of the final products showed that epimerization had occurred
to some extent. This was thought to take place during the
coupling of azide29 with resin-bound acid and upon the
hydrolysis of the dimethyl ketal protecting group. Library
synthesis was carried out using the IRORIRf tags. Evaluation
of the library against cathepsins K, L, and B revealed
interesting SAR. The library was essentially devoid of
cathepsin B activity. This was believed to be due to an
unfavorable interaction of the heterobiaryl with an insertion
loop present on the S′ side of the enzyme. Cathepsin K had
a strong preference for leucine versus phenylalanine at the
P2 position, while cathepsin L showed a slight preference
for phenylalanine. The most potent cathepsin K inhibitor was
compound33: Ki ) 1.3 nM, ca. 70-fold selective versus
cathepsin L.

A beautiful example of the application of solid-phase
chemistry in drug discovery is found in the optimization of

Figure 13. Optimization library 1.20 and the identification of a clinical candidate for human rhinovirus 3C protease.66,153
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irreversible human rhinovirus 3C protease inhibitors leading
to a clinical candidate.66,153 Researchers at Agouron Phar-
maceuticals had shown that substrate-based peptide alde-
hydes, represented by34, were potent, reversible inhibitors
of 3C protease. Due to the well-known pharmacological
limitations of peptide aldehydes as viable drug candidates,
the group turned to peptide Michael acceptors as covalent,
irreversible inhibitors of the cysteine protease with the belief
that the electrophilicity of these agents could be sufficiently
modulated through high enzyme specificity. The lead com-
pound 35, based on the enzyme’s P1 and P2 specificity

preferences, possessed a second-order rate constantkobs/I )
25 000 M-1 s-1. Exchange of the N-terminal benzyloxycar-
bamoyl group in35 for the benzylthiocarbamoyl group led
to a 10-fold increasein the second-order rate constant (36:
kobs/I ) 280 000 M-1 s-1). The rationale for the boost in
affinity was provided through analysis of the X-ray crystal
structure of inhibitor36 bound to serotype-2 3C protease.
The crystal structure revealed that the thiocarbamate sulfur
atom lies deep in the enzyme’s S4 pocket and is in van der
Waals contact with the S4 subsite’s Phe residue. This is in
contrast to the oxygen analogue35. However, there was

Figure 14. 1,4-Benzodiazepines as inhibitors of Src protein tyrosine kinase.187

Figure 15. Ugi libraries of Cdc25 phosphatase inhibitors.14
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Figure 16. Abbott’s FTase libraries.8,101
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concern that the thiocarbamate moiety would prove to be a
metabolic and/or toxicologic liability, and thus an N-terminal
surrogate was sought. This was carried out through solid-
phase chemical optimization. Library 1.20 was created by
attaching glutamic acid analogue39 to Rink resin (Figure
13). Amide40 so obtained was deprotected and subjected
to amino acid couplings to furnish41 after Fmoc-deprotec-
tion. Amine41was a key intermediate derivatized with some
500 acylating reagents to generate the optimization library.
Evaluation of library 1.20 using a high throughput assay
identified the 5-methylisoxzole-3-carboxyl group as the
preferred N-terminal surrogate. This heterocycle was incor-
porated into the main series (36 f 37). Compound37
(kobs/I ) 260 000 M-1 s-1) was essentially equipotent with
thiocarbamate36 (kobs/I ) 280 000 M-1 s-1). Further
analogues produced inhibitor38 (AG7088;kobs/I ) 1 470 000
M-1 s-1) with reduced peptide character. AG7088 is currently
undergoing clinical evaluation for the treatment of rhinoviral-
mediated infections, e.g., the common cold. This research

effort represents a prime example of the value of combina-
torial chemistry (solid-phase synthesis) in lead optimization.
In this instance, the N-terminal capping element 5-methyl-
isoxazole-3-carboxamide identified in library 1.20 was
retained in the clinical candidate.

Libraries Yielding Nonproteolytic Enzyme Inhibitors

Table 2 lists 19 libraries displaying activity against
nonproteolytic-type enzymes. The table is subdivided into
kinases and phosphatases (entries 2.1-2.4), transferases
(entries 2.5-2.8), reductases and dehydratases (entries 2.9-
2.12), and miscellaneous mammalian and nonmammalian
enzymes (entries 2.13-2.19).

Benzodiazepine library 2.1, composed of 1640 members
and prepared in the Ellman group, was screened against a
wide variety of protein tyrosine kinases including Src, Yes,
Abl, Lck, Csk, and fibroblast growth factor receptor (Figure
14).187 Binding was observed only against the Src family
(mixed against the peptidic substrate,Ki ) 35 µM; noncom-

Figure 17. Inhibitors of Erm methyltransferase by NMR and parallel synthesis.14
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Figure 18. Merck’s PDE-4 optimization library 2.15.93
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petitive against ATP-Mg,Ki ) 17 µM). Preferred ring
substituents include thep-hydroxyphenyl andp-hydroxy-
benzyl groups. The small nonpeptide, nonnucleotide class
of compounds is structurally unique among known kinase
inhibitors. Lead42 is an inhibitor of colony formation of
HT-29 colon adenocarcinoma cells that are dependent on
Src activity.

A four-component Ugi condensation was used to create
three libraries (2.4a-c) containing potential phosphatase
inhibitors (Figure 15).14 These libraries incorporated a
selection of known phosphate mimics as either the aldehyde
or acid Ugi reaction partners. Libraries were screened against
cell cycle phosphatase Cdc25, an oncology target. A number
of structures (e.g.,44-46) were found to be active. Potencies
of resynthesized compounds ranged from 0.7 to 35µM.

Protein farnesyltransferase (FTase) is responsible for the
farnesylation of oncogenic Ras proteins, a posttranslational
modification required for membrane association and signal
transduction. Inhibitors of FTase block mitogenic signaling
pathway leading to uncontrolled cell division; hence, the
enzyme is an attractive target for cancer chemotherapy.
Abbott produced two optimization libraries 2.68 and 2.7101

in an effort to enhance the pharmacokinetic properties of
their lead47 (Figure 16). Biaryl47 is a potent, non-cysteine,
inhibitor of FTase (IC50 ) 0.4 nM) and active in whole cells.
In-house studies suggested the pyridinyl ether in47 is a
metabolic liability, presumably through unwanted formation
of the pyridineN-oxide. Evidence for this was obtained upon
replacement of the pyridinyl ring with a furfuryl moiety,
which afforded ether48 having 30% oral bioavailability in
the rat, albeit reduction in enzyme affinity. Bromide49 was
an advanced intermediate used for the generation of a library
of furanylbiaryls (library 2.6) via solution-phase Suzuki
coupling. A number of potent FTase inhibitors were found
in the library. In particular, the 5-(4-chlorophenyl)furfuryl
ether50 restored enzyme and cellular potency and was found
to have reasonable pharmacokinetic properties.

In library 2.7, benzylamines were explored as replacements
of the pyridinyl ether in47.101 Resin-bound aldehyde51was

subjected to reductive amination with a host of amines.
Inhibitor 52, derived from cyclohexylalaninol, demonstrated
nanomolar activity (IC50 ) 8 nM). Modification of the biaryl
to append ano-methyl substituent and replacing the hydroxyl
with a thioethyl group furnished inhibitor54 having high in
vitro (IC50 ) 0.2 nM) and cellular activity (EC50 ) 4.4 nM).
Compound54 was also active in vivo.

Erm (erythromycin-resistance) family of methyltrans-
ferases catalyzes the mono- and dimethylation of the N6-
amino group in adenine using S-adenosylmethionine (Ado-
Met) as a methyl source. This action results in base-specific
23S ribosomal RNA methylation, preventing the binding of
certain macrolide antibiotics, and is the mechanism by which
pathogenic bacteria may become resistant to these antibiotics.
Studies have shown that inhibitors of Erm methyltransferase
in combination with a broad-spectrum macrolide antibiotic
may be useful in treating resistant bacteria. Using SAR by
NMR, triazine 55 (and several other classes of small
molecules) was identified as a weak inhibitor of ErmAM
methyltransferase (Figure 17).89 The compound caused
chemical shift changes in Erm protein-boundS-adenosyl-L-
homocysteine (63; SAH), and its binding was competitive
with this naturally occurring Erm inhibitor. In-house ana-
logues of55 showed that the activity of this class could be
modulated by varying ring substituents (e.g.,56-58), leading
to the synthesis of the piperidinylaminotriazine59 (Ki ) 75
µM). Keeping the amino and piperidinyl substituents in59
constant, library 2.8a of 232 members was created. Evalu-
ation of the library revealed the 2-aminoindanyl as a par-
ticularly effective synthon, yielding an ErmAM inhibitor
60: Ki ) 8 µM. The corresponding 1-aminoindanyl congener
was 10-fold less active. Library 2.8b further explored the
SAR of the class wherein the amino and indanyl substituents
were held constant while varying the piperidinyl group.
Thislibrary led to a further 2-fold increase in potency; the
anilino group was preferred over piperidine (60 f 62).
Further NMR and X-ray crystallographic studies indicated
that the anilino group in62partially fills the space occupied
by the ribose ring of SAH (63), while the amino acid portion

Figure 19. Tetrahydro-â-carboline library yielding DNA gyrase inhibitors.250
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Figure 20. Delta opioid ligands from Organon’s libraries 3.1a,b-3.3.11,55
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of SAH is completely unoccupied. This suggests that
additional gains in potency may be achieved by further
structural modifications of62, engaging unoccupied binding
sites in ErmAM.

The solid-phase synthesis of highly substituted thiophene
derivatives and their activity against the cyclic nucleotide
phosphodiesterase-4 (PDE-4) enzyme were described by
researchers at Merck Frosst (Figure 18).93 PDE-4 is a member
of a broad class of hydrolases and is primarily responsible
for the hydrolysis of cAMP in inflammatory and immune
cells. Rolipram64, piclamilast65, and ariflo66are examples
of PDE-4 inhibitors currently in development for the treat-
ment of depression, rheumatoid arthritis, and asthma, re-
spectively. Library 2.15 was based on the lead structure67,
a trisubstituted furan, presumably identified through screen-
ing an internal compound collection, possessing an IC50 )
2.5 µM against PDE-4. Initial SAR revealed that furan and
thiophene cores were interchangeable providing that the 2-
and 5-aryl rings remained intact. In contemplating a library
design, the biaryl rings were thought to be introduced by
Suzuki-type couplings. A bromomethyl group was fixed at
position C(3) to facilitate the introduction of a broad range
of substituents at this position via nucleophilic substitution.
For the actual solid-phase synthesis, bromo- and iodo-
substituted aromatic carboxylic acids were first attached to
Wang resin to give72. Suzuki coupling to readily available
boronic acid71 furnished hydroxymethylthiophene interme-
diate73. Bromination of the resin-bound73 using 2 equiv
of NBS in THF containing 2% water occurred in high yield
without compromising the linker. Bromide74 in turn was
subjected to a second Suzuki coupling with a host of aryl
and heteroaryl boronic acids to give the 2,5-biaryl-3-
hydroxymethylthiophenes75. Conversion of the hydroxy

group to the corresponding bromide was accomplished using
bromotriphenylphosphine bromide in methylene chloride
(75 f 76). Bromomethyl intermediate76 was treated with
a range of nitrogen and sulfur nucleophiles, affording library
2.15. Alternatively, carbon-carbon bond formation via Pd-
catalyzed coupling of76with lithoaryltriisopropylboronates
led to the direct exchange of the bromine atom for an aryl
ring. One of the more potent PDE-4 inhibitors identified from
the library was77, IC50 ) 8.0 nM. This inhibitor contained
the 3-cyclopentyloxy-4-methoxyphenyl ring at C(5), a sub-
stituent shared by known PDE-4 inhibitors64-66.

DNA gyrase inhibitors were identified from a library of
tetrahydro-â-carbolines (library 2.19, Figure 19).250 The key
intermediate for the library was the resin-bound amino acid
aldehyde85 prepared by sequentially attaching amino acid
fluorenylmethyl esters to chlorocarbonate resin, followed by
deprotection, reduction of the corresponding activated pen-
tafluorophenyl esters with tetrabutylammonium borohydride,
and oxidation with sulfur trioxide-pyridine complex (82 f
83 f 84). Pictet-Spengler reaction of85 with a series of
tryptamines and then derivatization of the resulting secondary
amino function of the tetrahydro-â-carboline furnished library
2.19.

Libraries Yielding G-Protein Coupled Receptor
Agonists and Antagonists

Entries in Table 3 refer to those libraries that have yielded
agents with binding affinity toward G-protein coupled
receptors (GPCRs). Within the table are libraries active
against opioid receptors (libraries 3.1-3.5), serotonin recep-
tors (libraries 3.6 and 3.7), somatostatin receptors (libraries
3.8-3.9), and assorted miscellaneous receptors (libraries
3.10-3.15).

Figure 21. Merck’s library of 3-aryloxy-2-propanolamines.229
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Several focused libraries ofδ opioid ligands based on the
Glaxo Wellcome lead SNC-8088 were synthesized at
Organon (Figure 20).11,55 Initial SAR studies indicated that
the aryl methoxy and piperazinyl methyl groups were not
critical for δ opioid affinity, but theN,N-diethylcarboxamide
was an essential structural feature. This is represented by
structure89: δ opioid IC50 ) 4.1 nM, and>1000-fold
selective versus theµ andκ opioid receptors. In an effort to
further explore the SAR, four optimization libraries were
prepared. Libraries 3.1a and 3.1b relied on REM resin
methodology to strategically target the carboxamide group
for modification. In this chemistry, piperazines90 and 91
were coupled to REM resin to give ester92 and stannane
93, respectively. Selective deprotection of thetert-butyl ester
group with TFA furnished the corresponding acid, which in
turn was converted to either an ester or amide (92 f 95).
Stannane93 was subjected to Stille coupling to 10 aryl and
heteroaryl bromides (93f 94). Release of library compounds
was achieved after quaternization of resins94 and95 with
allyl bromide and Hofmann elimination (Hunig’s base, 18
h, 20 °C). No significant improvement in activity was
observed.

In complementary optimization libraries 3.2 and 3.3,
piperazine replacements (cyclic diamines) andN-substituted
piperazines were investigated (Figure 20).11 In these libraries
the diethylcarboxamide group was retained. None of the
cyclic diamines were as active as piperazine, but a 4-fold
improvement in binding affinity was observed when pip-
eronyl was substituted for allyl;100: IC50 ) 1.4 nM.
Reintroducing the dimethyl groups and piperazine stereo-
chemistry as per SNC-80, gave101 with subnanomolar
potency against theδ opioid receptor.

A solution-phase synthesis was developed for the prepara-
tion of 3-aryloxy-2-propanolamine libraries (library 3.6,
Figure 21).229 Specific interest in this class of compound
stems from an interest in identifying dual affinity 5-HT1A

and 5-HT re-uptake ligands as potential antidepressants with
improved side effects. The library design focused on modify-
ing pindolol 102 (partial 5-HT1A agonist). A diverse set of
amine and phenol synthons were utilized in the library. These
were obtained from commercial sources and in-house
“privileged structures”, as well as selections based on amine
fragments from serotonin re-uptake blockers and substituted
phenols from 5-HT1A ligands. Binding data were first

Figure 22. Biological activities of Ellman’s turn mimetic library.213
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obtained on purified mixtures containing up to 100 com-
pounds per well, then deconvoluted to yield single com-
pounds. Several potent 5-HT1A ligands were identified. The
simple substituted phenols were found to be superior to the
indole in pindolol102. The spirocyclic amine found in107-
110 was the only amine to give consistent levels of dual
activity (binding at serotonin re-uptake receptors and 5-HT1A

receptors). Compound110demonstrated nearly full agonism
at 5-HT1A and potent re-uptake blocking properties. Com-
pound110 was found to be 65% orally bioavailable in the
rat (3 mg/kg) possesing at1/2 ) 3.0 h.

Ellman published a full report on the synthesis of a turn
mimetic library (libraries 3.8 and 3.10; Figure 22).96,213The
synthesis takes advantage of a facile intramolecular-cyclative
thiol SN2 displacement, simultaneously cleaving material
from resin and creating the penultimate 9- and 10-member
rings. Preliminary reports of this chemistry have appeared
in the literature as well as multiple biological activities
associated with this interesting class of medium-sized

heterocycles. Turn mimetics have shown activity as integrin
antagonists,286 human neutrophile receptor (fMLF) inhibi-
tors,287 and selective agonists against somatostatin-5213 and
melanocortin-1.96

A full disclosure of the library synthesis (library 3.9) and
screening of Merck’s selective somatostatin receptor agonists
was published this past year.158, 288

Neuropeptide Y, found in both the peripheral and central
nervous systems, is believed to be involved in the regulation
of feeding, energy metabolism, vascular tone, learning and
memory, and the release of pituitary hormones. To date, six
receptors of this family have been characterized pharmaco-
logically. Several antagonists of the NPY-1 receptor have
been reported in the literature. One class of compounds
discovered at Lilly is the benzimidazoles, represented by
structure123 (Figure 23).205 The potent NPY-1 antagonist
was obtained following extensive medicinal chemical opti-
mization, starting from the 3µM in-house screening hit122.
Using the combined applications of computational chemistry

Figure 23. Neuropeptide Y-1 antagonists from library 3.14.205
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and parallel solid-phase synthesis, further optimization of
123was undertaken. Computer modeling suggested that the
interactions between the distal piperidine group and salient
residues in the operative NPY-1 model may not be optimal
for high affinity binding. With this hypothesis in mind,
library 3.14 was constructed to explore alternative amines.
Chemistry was carried out via the reductive amination using
resin-bound aldehyde124and ca. 100 amines. Amines were
selected by initially searching the ACD database of com-
mercially available primary amines (6642 matches). The
“master list” was reduced in a first round by discarding
amines containing carboxylic acids and MW>250 (1636
matches) and in a second round by similarity clustering (577
matches). A final list of amine synthons was generated by
human selection to<100 amines. Some 85-90 compounds
were prepared in the library and each evaluated against NPY-
1. Only one compound appeared more active than123, and
that was a compound obtained from the reductive amination

of aldehyde124with N-methyl-2-aminoethylpyrrole. How-
ever, the structure of the expected product127 was incon-
sistent with its spectroscopic data. It turned out that, in this
particular case, the intermediate imine126 undergoes a
spontaneous Pictet-Spengler cyclization affording tetrahy-
dro-5-aza-indole128. This is thesecondsolid-phase synthesis
example where the occurrence of an unanticipated side
reaction yielded a biologically active agent.289

An interesting application of combinatorial library syn-
thesis is in the rapid evaluation of “competitor compounds”.
It is not uncommon in the pharmaceutical industry to have
multiple companies simultaneously pursue drug discovery
programs focused on an identical molecular target in the race
to be first to market with a breakthrough drug. For this
reason, when a competitor publishes the structure and
biological activity of a “hot target”, other research groups
will prepare this compound and use it as a benchmark against
their own series. In many instances however, much of the

Figure 24. Human neurokinin-3 receptor antagonists.188
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Figure 25. Potassium channel blockers obtained from Biosym/MSI’s ligand design program LUDI and parallel synthesis.145

Figure 26. Natural product-based libraries.
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SAR around the structure is unpublished and kept secret,
although this information can be invaluable in enhancing
one’s own lead series. Library 3.15 is an optimization library
synthesized at SmithKline Beecham and designed to explore
the SAR requirements of the 3,4-diclorophenylpiperidine
class of NK-3 receptor antagonists (Figure 24).188 This class
of agent was first reported by Sanofi (e.g., SR 142801:129),
but SAR data was virtually nonexistent in the literature.
Using a combinatorial chemical approach, SmithKline was
able to rapidly generate analogues of interest. This was
carrried out synthetically by sequential reaction of the
bifunctional derivative130, derived from the key (3,4-
dichlorophenyl)-3-propylpiperidine pharmacophore, with
amines and electrophiles (library 3.15:132a-c).188

Libraries Yielding Non-GPCR Ligands

Libraries yielding active structures against non-GPCR
molecular targets are delineated in Table 4. Table 4 is
subdivided into integrin receptors (libraries 4.1-4.5), ion
channels (libraries 4.6 and 4.7), and miscellaneous targets
(libraries 4.8-4.12).

Three of the five libraries describing integrin antagonists
were direct takeoffs of the well-known -Arg-Gly-Asp-
binding motif linking basic guanidyl and carboxylic acid
residues through an optimal spacer. Library 4.1 utilizes an
azapeptide-type spacer77 while isoxazole linkers were utilized
by DuPont (libraries 4.3 and 4.4).190 A new binding motif,
D-Pro-D-Tyr-D-Leu-, identified in Selectide’s library 4.2 is
of interest as it is a neutral ligand,223 although its affinity is
rather weak (14µM) compared to classical charged ligands
possessing nanomolar affinity. Optimization library 4.5 was
part of a broad-based medicinal chemistry effort to identifiy
potent integrin antagonists incorporating piperidine as a
surrogate for the guanidyl residue.

An interesting new series of phenyl substituted stilbenes
as voltage gated potassium channel blockers were described
by Lew and Chamberlin (library 4.7, Figure 25).145 The
stilbene pharmacophore was computationally designed using
LUDI, a Biosym/MSI ligand design program, and predicted
to block the potassium channel. A combinatorial library of
LUDI hits was generated furnishingµM leads142and143
for further studies.

Libraries of Cytotoxic and Antiinfective Agents

Table 5 contains 17 libraries subdivided into two categories
demonstrating cytotoxic activity (libraries 5.1-5.5) and
antiinfective activity, including antibacterials (libraries 5.6-
5.13), antifugals (libraries 5.14-5.15), and antivirals (librar-
ies 5.16 and 5.17). One reoccurring theme in this set of
entries is the use of natural products as templates or starting
points for library design. Examples of this include (-)-
stipiamide-based library 5.1,4 estradiol-based library 5.4,227

(-)-indolactam V-based library 5.5,156 kramerixin-based
library 5.15,68 and the prostanoid-based library 5.16 (Figure
26).141

Isis described a series of libraries using a technique of
“simultaneous addition of fuctionality” in which chemically
reactive polyhalogenated heterocycles are treated with excess
nucleophiles to create libraries possessing antibacterial
activity (libraries 5.11-5.13).119No specific compounds were
identified from the libraries. Polyhalogenated heteroaromatics
as well as the corresponding reactive fluoronitroaromatics
have been used extensively over the past several years in
the synthesis of biologically active libraries and other library
constructs of medicinal interest (Figures 6 and 7).
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Table 1. (Continued)

a Asterisk (*) indicates point of attachment to the resin.

Table 2. Chemical Libraries Targeted for Nonproteolytic Enzymesa
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Table 2. (Continued)

a Asterisk (*) indicates point of attachment to the resin.
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Table 3. Chemical Libraries Targeted for G-Protein Coupled Receptorsa
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Table 3. (Continued)

a Asterisk (*) indicates point of attachment to the resin.
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Table 4. Chemical Libraries Targeted for Non-G-Protein Coupled Receptors (non-GPCRs)a
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Table 4. (Continued)

a Asterisk (*) indicates point of attachment to the resin.

Table 5. Chemical Libraries Displaying Cytotoxic and Antiinfective Activitya
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Table 5. (Continued)

a Asterisk (*) indicates point of attachment to the resin.
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Table 6. Scaffold Derivatization: (a) Solid Phase, (b) Solution Phasea
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Table 7. Acyclic Synthesis: (a) Solid Phase, (b) Solution Phasea

Table 6. (Continued)

a Asterisk (*) indicates point of attachment to the resin.
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Table 8. Monocyclic Synthesis: (a) Solid Phase, (b) Solution Phasea

Table 7. (Continued)

a Asterisk (*) indicates point of attachment to the resin.
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Table 8. (Continued)

a Asterisk (*) indicates point of attachment to the resin.
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Table 9. Bicyclic and Spirocyclic Synthesis: (a) Solid Phase, (b) Solution Phasea
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Table 9. (Continued)

a Asterisk (*) indicates point of attachment to the resin.

Table 10. Polycyclic and Macrocyclic Synthesis: (a) Solid Phase, (b) Solution Phasea
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(22) Böhm, H.-J.; Banner, D. W.; Weber, L. Combinatorial docking and
combinatorial chemistry: design of potent non-peptide thrombin
inhibitors.J. Comput.-Aided Mol. Des.1999, 13, 51-56.

(23) Boisnard, S.; Chastanet, J.; Zhu, J. A high throughput synthesis of
aryl triflate and aryl nonaflate promoted by a polymer supported base
(PTBD). Tetrahedron Lett.1999, 40, 7469-7472.

(24) Boldi, A. M.; Johnson, C. R.; Eissa, H. O. Solid-phase library
synthesis of triazolopyridazines via [4+2] cycloadditions.Tetrahe-
dron Lett.1999, 40, 619-622.

(25) Bolton, G. L.; Hodges, J. C. Solid-phase synthesis of substituted
benzazepines via intramolecular Heck cyclization.J. Comb. Chem.
1999, 1, 130-133.

(26) Brain, C. T.; Paul, J. M.; Loong, Y.; Oakley, P. J. Novel procedure
for the synthesis of 1,3,4-oxadiazoles from 1,2-diacylhydrazines using
polymer-supported Burgess reagent under microwave conditions.
Tetrahedron Lett.1999, 40, 3275-3278.
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